Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions for obtaining the density, random deviates and maximum likelihood estimates of the Poisson lognormal distribution and the bivariate Poisson lognormal distribution.
Computes pseudo-realizations from the posterior distribution of a Gaussian Process (GP) with the method described in Azzimonti et al. (2016) <doi:10.1137/141000749>. The realizations are obtained from simulations of the field at few well chosen points that minimize the expected distance in measure between the true excursion set of the field and the approximate one. Also implements a R interface for (the main function of) Distance Transform of sampled Functions (<https://cs.brown.edu/people/pfelzens/dt/index.html>).
Functional claims reserving methods based on aggregated chain-ladder data, also known as a run-off triangle, implemented in three nonparametric algorithms (PARALLAX, REACT, and MACRAME) proposed in Maciak, Mizera, and Pešta (2022) <doi:10.1017/asb.2022.4>. Additional methods including permutation bootstrap for completed run-off triangles are also provided.
Installs an updated version of pomdp-solve', a program to solve Partially Observable Markov Decision Processes (POMDPs) using a variety of exact and approximate value iteration algorithms. A convenient R infrastructure is provided in the separate package pomdp. Kaelbling, Littman and Cassandra (1998) <doi:10.1016/S0004-3702(98)00023-X>.
Permutation Distribution Clustering is a clustering method for time series. Dissimilarity of time series is formalized as the divergence between their permutation distributions. The permutation distribution was proposed as measure of the complexity of a time series.
This package implements data processing described in <doi:10.1126/sciadv.abk3283> to align modern differentially private data with formatting of older US Census data releases. The primary goal is to read in Census Privacy Protected Microdata Files data in a reproducible way. This includes tools for aggregating to relevant levels of geography by creating geographic identifiers which match the US Census Bureau's numbering. Additionally, there are tools for grouping race numeric identifiers into categories, consistent with OMB (Office of Management and Budget) classifications. Functions exist for downloading and linking to existing sources of privacy protected microdata.
Statistical power simulation for testing the Rasch Model based on a three-way analysis of variance design with mixed classification.
Detecting markers of politeness in English natural language. This package allows researchers to easily visualize and quantify politeness between groups of documents. This package combines prior research on the linguistic markers of politeness. We thank the Spencer Foundation, the Hewlett Foundation, and Harvard's Institute for Quantitative Social Science for support.
This package provides a toolkit of functions to help: i) effortlessly transform collected data into a publication ready format, ii) generate insightful visualizations from clinical data, iii) report summary statistics in a publication-ready format, iv) efficiently export, save and reload R objects within the framework of R projects.
This package provides tools for examining Rprof profile output.
The Phylogenetic Ornstein-Uhlenbeck Mixed Model (POUMM) allows to estimate the phylogenetic heritability of continuous traits, to test hypotheses of neutral evolution versus stabilizing selection, to quantify the strength of stabilizing selection, to estimate measurement error and to make predictions about the evolution of a phenotype and phenotypic variation in a population. The package implements combined maximum likelihood and Bayesian inference of the univariate Phylogenetic Ornstein-Uhlenbeck Mixed Model, fast parallel likelihood calculation, maximum likelihood inference of the genotypic values at the tips, functions for summarizing and plotting traces and posterior samples, functions for simulation of a univariate continuous trait evolution model along a phylogenetic tree. So far, the package has been used for estimating the heritability of quantitative traits in macroevolutionary and epidemiological studies, see e.g. Bertels et al. (2017) <doi:10.1093/molbev/msx246> and Mitov and Stadler (2018) <doi:10.1093/molbev/msx328>. The algorithm for parallel POUMM likelihood calculation has been published in Mitov and Stadler (2019) <doi:10.1111/2041-210X.13136>.
Function to read PX-Web data into R via API. The example code reads data from the three national statistical institutes, Statistics Norway, Statistics Sweden and Statistics Finland.
Power estimation and sample size calculation for 10X Visium Spatial Transcriptomics data to detect differential expressed genes between two conditions based on bootstrap resampling. See Shui et al. (2025) <doi:10.1371/journal.pcbi.1013293> for method details.
This package implements schemes for estimating player or team skill based on dynamic updating. Implemented methods include Elo, Glicko, Glicko-2 and Stephenson. Contains pdf documentation of a reproducible analysis using approximately two million chess matches. Also contains an Elo based method for multi-player games where the result is a placing or a score. This includes zero-sum games such as poker and mahjong.
Fits Emax models to pharmacokinetic/pharmacodynamic (PK/PD) data, estimate key parameters, and visualise model fits for multiple PK/PD indices. Methods are described in Macdougall J (2006) <doi:10.1007/0-387-33706-7_9>, Spiess AN, Neumeyer N (2010) <doi:10.1186/1471-2210-10-6>, and Burnham KP, Anderson DR (2004) <doi:10.1177/0049124104268644>.
This package provides a toolbox for making R functions and capabilities more accessible to students and professionals from Epidemiology and Public Health related disciplines. Includes a function to report coefficients and confidence intervals from models using robust standard errors (when available), functions that expand ggplot2 plots and functions relevant for introductory papers in Epidemiology or Public Health. Please note that use of the provided data sets is for educational purposes only.
This package provides data set and functions for exploration of Multiple Indicator Cluster Survey (MICS) 2014 Child questionnaire data for Punjab, Pakistan (<http://www.mics.unicef.org/surveys>).
Simulate the dynamic of wolf populations using a specific Individual-Based Model (IBM) compiled in C, see Chapron et al. (2016) <doi:10.1016/j.ecolmodel.2016.08.012>.
Power and sample size calculation for bulk tissue and single-cell eQTL analysis based on ANOVA, simple linear regression, or linear mixed effects model. It can also calculate power/sample size for testing the association of a SNP to a continuous type phenotype. Please see the reference: Dong X, Li X, Chang T-W, Scherzer CR, Weiss ST, Qiu W. (2021) <doi:10.1093/bioinformatics/btab385>.
This package provides functions for testing phylogenetic niche conservatism, a key prerequisite in community assembly studies. The package integrates global functional trait data across major taxonomic groups and implements methods such as Pagel's Lambda and Blomberg's K to quantify phylogenetic signals in ecological communities. Methods are described in Münkemüller et al. (2012) <doi:10.1111/j.2041-210X.2012.00196.x>.
Conduct simulation-based customized power calculation for clustered time to event data in a mixed crossed/nested design, where a number of cell lines and a number of mice within each cell line are considered to achieve a desired statistical power, motivated by Eckel-Passow and colleagues (2021) <doi:10.1093/neuonc/noab137> and Li and colleagues (2025) <doi:10.51387/25-NEJSDS76>. This package provides two commonly used models for powering a design, linear mixed effects and Cox frailty model. Both models account for within-subject (cell line) correlation while holding different distributional assumptions about the outcome. Alternatively, the counterparts of fixed effects model are also available, which produces similar estimates of statistical power.
Analyzing regression data with many and/or highly collinear predictor variables, by simultaneously reducing the predictor variables to a limited number of components and regressing the criterion variables on these components (de Jong S. & Kiers H. A. L. (1992) <doi:10.1016/0169-7439(92)80100-I>). Several rotation and model selection options are provided.
Includes functions to wrap most endpoints of the PaleobioDB API and to visualize and process the obtained fossil data. The API documentation for the Paleobiology Database can be found at <https://paleobiodb.org/data1.2/>.
This package provides a shiny GUI that performs high dimensional cluster analysis. This tool performs data preparation, clustering and visualisation within a dynamic GUI. With interactive methods allowing the user to change settings all without having to to leave the GUI. An earlier version of this package was described in Laa and Valencia (2022) <doi:10.1140/epjp/s13360-021-02310-1>.