Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Flexible parametric Accelerated Hazards (AH) regression models in overall and relative survival frameworks with 13 distinct Baseline Distributions. The AH Model can also be applied to lifetime data with crossed survival curves. Any user-defined parametric distribution can be fitted, given at least an R function defining the cumulative hazard and hazard rate functions. See Chen and Wang (2000) <doi:10.1080/01621459.2000.10474236>, and Lee (2015) <doi:10.1007/s10985-015-9349-5> for more details.
Which day a week starts depends heavily on the either the local or professional context. This package is designed to be a lightweight solution to easily switching between week-based date definitions.
This package provides a spatiotemporal model that simulates the spread of Ascochyta blight in chickpea fields based on location-specific weather conditions. This model is adapted from a model developed by Diggle et al. (2002) <doi:10.1094/PHYTO.2002.92.10.1110> for simulating the spread of anthracnose in a lupin field.
EM algorithm for estimation of parameters and other methods in a quantile regression.
For a binary classification the adjusted sensitivity and specificity are measured for a given fixed threshold. If the threshold for either sensitivity or specificity is not given, the crossing point between the sensitivity and specificity curves are returned. For bootstrap procedures, mean and CI bootstrap values of sensitivity, specificity, crossing point between specificity and specificity as well as AUC and AUCPR can be evaluated.
Fits tractable fully parametric odds-based regression models for survival data, including proportional odds (PO), accelerated failure time (AFT), accelerated odds (AO), and General Odds (GO) models in overall survival frameworks. Given at least an R function specifying the survivor, hazard rate and cumulative distribution functions, any user-defined parametric distribution can be fitted. We applied and evaluated a minimum of seventeen (17) various baseline distributions that can handle different failure rate shapes for each of the four different proposed odds-based regression models. For more information see Bennet et al., (1983) <doi:10.1002/sim.4780020223>, and Muse et al., (2022) <doi:10.1016/j.aej.2022.01.033>.
This package provides a collection of tools for the analysis of habitat selection.
This package implements the Age Band Decomposition (ABD) method for standardizing tree ring width data while preserving both low and high frequency variability. Unlike traditional detrending approaches that can distort long term growth trends, ABD decomposes ring width series into multiple age classes, detrends each class separately, and then recombines them to create standardized chronologies. This approach improves the detection of growth signals linked to past climatic and environmental factors, making it particularly valuable for dendroecological and dendroclimatological studies. The package provides functions to perform ABD-based standardization, compare results with other common methods (e.g., BAI, C method, RCS), and facilitate the interpretation of growth patterns under current and future climate variability.
This package provides functions for processing and analyzing survey data from the All of Us Social Determinants of Health (AOUSDOH) program, including tools for calculating health and well-being scores, recoding variables, and simplifying survey data analysis. For more details see - Koleck TA, Dreisbach C, Zhang C, Grayson S, Lor M, Deng Z, Conway A, Higgins PDR, Bakken S (2024) <doi:10.1093/jamia/ocae214>.
An implementation of the additive polynomial (AP) design matrix. It constructs and appends an AP design matrix to a data frame for use with longitudinal data subject to seasonality.
Flagger to detect acute kidney injury (AKI) in a patient dataset.
Estimate the Å estákâ Berggren kinetic model (degradation model) from experimental data. A closed-form (analytic) solution to the degradation model is implemented as a non-linear fit, allowing for the extrapolation of the degradation of a drug product - both in time and temperature. Parametric bootstrap, with kinetic parameters drawn from the multivariate t-distribution, and analytical formulae (the delta method) are available options to calculate the confidence and prediction intervals. The results (modelling, extrapolations and statistical intervals) can be visualised with multiple plots. The examples illustrate the accelerated stability modelling in drugs and vaccines development.
Routines for astrochronologic testing, astronomical time scale construction, and time series analysis <doi:10.1016/j.earscirev.2018.11.015>. Also included are a range of statistical analysis and modeling routines that are relevant to time scale development and paleoclimate analysis.
The AHP method (Analytic Hierarchy Process) is a multi-criteria decision-making method addressing choice and outranking problems. The method enables to perform the analysis of alternatives in each type of criterion and then provides a global performance of each alternative in the decision context. The main difference of this package is the possibility of evaluating the alternatives using quantitative data, by numerical representation, and qualitative data, using the Saaty scale, providing preference relation between variables by a pairwise evaluation.
This package provides functions to accompany the book "Applied Statistical Modeling for Ecologists" by Marc Kéry and Kenneth F. Kellner (2024, ISBN: 9780443137150). Included are functions for simulating and customizing the datasets used for the example models in each chapter, summarizing output from model fitting engines, and running custom Markov Chain Monte Carlo.
This package provides a thin wrapper around the ajv JSON validation package for JavaScript. See <http://epoberezkin.github.io/ajv/> for details.
Visualize results generated by Antares, a powerful open source software developed by RTE to simulate and study electric power systems (more information about Antares here: <https://github.com/AntaresSimulatorTeam/Antares_Simulator>). This package provides functions that create interactive charts to help Antares users visually explore the results of their simulations.
This package provides functions for implementing the Analysis-of-marginal-Tail-Means (ATM) method, a robust optimization method for discrete black-box optimization. Technical details can be found in Mak and Wu (2018+) <arXiv:1712.03589>. This work was supported by USARO grant W911NF-17-1-0007.
Calculations of the most common metrics of automated advertisement and plotting of them with trend and forecast. Calculations and description of metrics is taken from different RTB platforms support documentation. Plotting and forecasting is based on packages forecast', described in Rob J Hyndman and George Athanasopoulos (2021) "Forecasting: Principles and Practice" <https://otexts.com/fpp3/> and Rob J Hyndman et al "Documentation for forecast'" (2003) <https://pkg.robjhyndman.com/forecast/>, and ggplot2', described in Hadley Wickham et al "Documentation for ggplot2'" (2015) <https://ggplot2.tidyverse.org/>, and Hadley Wickham, Danielle Navarro, and Thomas Lin Pedersen (2015) "ggplot2: Elegant Graphics for Data Analysis" <https://ggplot2-book.org/>.
Functionality for working with virtual machines (VMs) in Microsoft's Azure cloud: <https://azure.microsoft.com/en-us/services/virtual-machines/>. Includes facilities to deploy, startup, shutdown, and cleanly delete VMs and VM clusters. Deployment configurations can be highly customised, and can make use of existing resources as well as creating new ones. A selection of predefined configurations is provided to allow easy deployment of commonly used Linux and Windows images, including Data Science Virtual Machines. With a running VM, execute scripts and install optional extensions. Part of the AzureR family of packages.
Simulate the effect of management or demography on allele retention and inbreeding accumulation in bottlenecked populations of animals with overlapping generations.
This package provides tools for defining recurrence rules and recurrence sets. Recurrence rules are a programmatic way to define a recurring event, like the first Monday of December. Multiple recurrence rules can be combined into larger recurrence sets. A full holiday and calendar interface is also provided that can generate holidays within a particular year, can detect if a date is a holiday, can respect holiday observance rules, and allows for custom holidays.
Actuarial reports are prepared for the last day of a specific period, such as a month, a quarter or a year. Actuarial models assume that certain events happen at the beginning or end of periods. The package contains functions to easily refer to the first or last (working) day within a specific period relative to a base date to facilitate actuarial reporting and to compare results.
This package provides a testing framework for testing the multivariate point null hypothesis. A testing framework described in Elder et al. (2022) <arXiv:2203.01897> to test the multivariate point null hypothesis. After the user selects a parameter of interest and defines the assumed data generating mechanism, this information should be encoded in functions for the parameter estimator and its corresponding influence curve. Some parameter and data generating mechanism combinations have codings in this package, and are explained in detail in the article.