Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Affymetrix rta10 annotation data (chip rta10transcriptcluster) assembled using data from public repositories.
Codelink Rat Whole Genome Bioarray (~34 000 rat gene targets) annotation data (chip rwgcod) assembled using data from public repositories.
This package implements a variety of functions useful for gene set analysis using rotations to approximate the null distribution. It contributes with the implementation of seven test statistic scores that can be used with different goals and interpretations. Several functions are available to complement the statistical results with graphical representations.
This package provides a package containing an environment representing the RAE230A.CDF file.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was RG-U34A\_probe\_tab.
In many analyses, a large amount of variables have to be tested independently against the trait/endpoint of interest, and also adjusted for covariates and confounding factors at the same time. The major bottleneck in these is the amount of time that it takes to complete these analyses. With RegParallel, a large number of tests can be performed simultaneously. On a 12-core system, 144 variables can be tested simultaneously, with 1000s of variables processed in a matter of seconds via nested parallel processing. Works for logistic regression, linear regression, conditional logistic regression, Cox proportional hazards and survival models, and Bayesian logistic regression. Also caters for generalised linear models that utilise survey weights created by the survey CRAN package and that utilise survey::svyglm'.
Use A Resampling-Based Empirical Bayes Approach to Assess Differential Expression in Two-Color Microarrays and RNA-Seq data sets.
The package includes functions to build restriction enzyme cut site (RECS) map, distribute mapped sequences on the map with five different approaches, find enriched/depleted RECSs for a sample, and identify differentially enriched/depleted RECSs between samples.
Affymetrix ragene11 annotation data (chip ragene11stprobeset) assembled using data from public repositories.
The RNAseqCovarImpute package makes linear model analysis for RNA sequencing read counts compatible with multiple imputation (MI) of missing covariates. A major problem with implementing MI in RNA sequencing studies is that the outcome data must be included in the imputation prediction models to avoid bias. This is difficult in omics studies with high-dimensional data. The first method we developed in the RNAseqCovarImpute package surmounts the problem of high-dimensional outcome data by binning genes into smaller groups to analyze pseudo-independently. This method implements covariate MI in gene expression studies by 1) randomly binning genes into smaller groups, 2) creating M imputed datasets separately within each bin, where the imputation predictor matrix includes all covariates and the log counts per million (CPM) for the genes within each bin, 3) estimating gene expression changes using `limma::voom` followed by `limma::lmFit` functions, separately on each M imputed dataset within each gene bin, 4) un-binning the gene sets and stacking the M sets of model results before applying the `limma::squeezeVar` function to apply a variance shrinking Bayesian procedure to each M set of model results, 5) pooling the results with Rubins’ rules to produce combined coefficients, standard errors, and P-values, and 6) adjusting P-values for multiplicity to account for false discovery rate (FDR). A faster method uses principal component analysis (PCA) to avoid binning genes while still retaining outcome information in the MI models. Binning genes into smaller groups requires that the MI and limma-voom analysis is run many times (typically hundreds). The more computationally efficient MI PCA method implements covariate MI in gene expression studies by 1) performing PCA on the log CPM values for all genes using the Bioconductor `PCAtools` package, 2) creating M imputed datasets where the imputation predictor matrix includes all covariates and the optimum number of PCs to retain (e.g., based on Horn’s parallel analysis or the number of PCs that account for >80% explained variation), 3) conducting the standard limma-voom pipeline with the `voom` followed by `lmFit` followed by `eBayes` functions on each M imputed dataset, 4) pooling the results with Rubins’ rules to produce combined coefficients, standard errors, and P-values, and 5) adjusting P-values for multiplicity to account for false discovery rate (FDR).
rifiComparative is a continuation of rifi package. It compares two conditions output of rifi using half-life and mRNA at time 0 segments. As an input for the segmentation, the difference between half-life of both condtions and log2FC of the mRNA at time 0 are used. The package provides segmentation, statistics, summary table, fragments visualization and some additional useful plots for further anaylsis.
The R implementation for the Grammar of Succint Lipid Nomenclature parses different short hand notation dialects for lipid names. It normalizes them to a standard name. It further provides calculated monoisotopic masses and sum formulas for each successfully parsed lipid name and supplements it with LIPID MAPS Category and Class information. Also, the structural level and further structural details about the head group, fatty acyls and functional groups are returned, where applicable.
RNAmodR provides classes and workflows for loading/aggregation data from high througput sequencing aimed at detecting post-transcriptional modifications through analysis of specific patterns. In addition, utilities are provided to validate and visualize the results. The RNAmodR package provides a core functionality from which specific analysis strategies can be easily implemented as a seperate package.
This package implements UbiBic algorithm in R. This biclustering algorithm for analysis of gene expression data was introduced by Zhenjia Wang et al. in 2016. It is currently considered the most promising biclustering method for identification of meaningful structures in complex and noisy data.
This package provides a collection of methods for performing random rotations on high-dimensional, normally distributed data (e.g. microarray or RNA-seq data) with batch structure. The random rotation approach allows exact testing of dependent test statistics with linear models following arbitrary batch effect correction methods.
Probabilistic analysis of probe reliability and differential gene expression on short oligonucleotide arrays.
The package analyzes the Curve ROC, identificates it among different types of Curve ROC and calculates the area under de curve through the method that is most accuracy. This package is able to standarizate proper and improper pAUC.
This package provides an R wrapper for BWA alignment algorithms. Both BWA-backtrack and BWA-MEM are available. Convenience function to build a BWA index from a reference genome is also provided. Currently not supported for Windows machines.
Affymetrix raex10 annotation data (chip raex10sttranscriptcluster) assembled using data from public repositories.
Affymetrix Affymetrix RG_U34A Array annotation data (chip rgu34a) assembled using data from public repositories.
Functions, workflow, and a Shiny application for visualizing sequence conservation and designing degenerate primers, probes, and (RT)-(q/d)PCR assays from a multiple DNA sequence alignment. The results can be presented in data frame format and visualized as dashboard-like plots. For more information, please see the package vignette.
Microarray gene expression data from the study of Vawter et al., 2004.
This package provides a suite of classes and functions for randomizing patients in clinical trials.
This package provides a package containing an environment representing the RG_U34B.cdf file.