Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was RG-U34C\_probe\_tab.
Codelink Rat Inflammation 16 Bioarray annotation data (chip ri16cod) assembled using data from public repositories.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was RG-U34A\_probe\_tab.
Generator of web pages which display interactive network/graph visualizations with D3js, jQuery and Raphael.
RNA-Seq is currently used routinely, and it provides accurate information on gene transcription. However, the method cannot accurately estimate duplicated genes expression. Several strategies have been previously used, but all of them provide biased results. With Rmmquant, if a read maps at different positions, the tool detects that the corresponding genes are duplicated; it merges the genes and creates a merged gene. The counts of ambiguous reads is then based on the input genes and the merged genes. Rmmquant is a drop-in replacement of the widely used tools findOverlaps and featureCounts that handles multi-mapping reads in an unabiased way.
RUVnormalize is meant to remove unwanted variation from gene expression data when the factor of interest is not defined, e.g., to clean up a dataset for general use or to do any kind of unsupervised analysis.
This package was automatically created by package AnnotationForge version 1.11.21. The probe sequence data was obtained from http://www.affymetrix.com. The file name was RAE230B\_probe\_tab.
The package provides the data for the RDP Classifier 2.14 released in August 2023. It contains the latest bacterial and archaeal taxonomy training set No. 19 as described in Wang Q, Cole JR. 2024. Updated RDP taxonomy and RDP Classifier for more accurate taxonomic classification. Microbiol Resour Announc 0:e01063-23. <doi.org/10.1128/mra.01063-23>.
Affymetrix raex10 annotation data (chip raex10sttranscriptcluster) assembled using data from public repositories.
This package creates a muti-graph web page which allows the interactive exploration of differential analysis tests. The graphical web interface presents results as a table which is integrated with five interactive graphs: MA-plot, volcano plot, box plot, lines plot and cluster heatmap. Graphical aspect and information represented in the graphs can be customized by means of user controls. Final graphics can be exported as PNG format.
RedeR is an R-based package combined with a stand-alone Java application for interactive visualization and manipulation of nested networks. Graph, node, and edge attributes can be configured using either graphical or command-line methods, following igraph syntax rules.
The package includes functions to build restriction enzyme cut site (RECS) map, distribute mapped sequences on the map with five different approaches, find enriched/depleted RECSs for a sample, and identify differentially enriched/depleted RECSs between samples.
rGenomeTracksData is a collection of data from pyGenomeTracks project. The purpose of this data is testing and demonstration of rGenomeTracks. This package include 14 sample file from different genomic and epigenomic file format.
Affymetrix ragene21 annotation data (chip ragene21sttranscriptcluster) assembled using data from public repositories.
Resources for cross-study analyses of public DNAm array data from NCBI GEO repo, produced using Illumina's Infinium HumanMethylation450K (HM450K) and MethylationEPIC (EPIC) platforms. Provided functions enable download, summary, and filtering of large compilation files. Vignettes detail background about file formats, example analyses, and more. Note the disclaimer on package load and consult the main manuscripts for further info.
Rbec is a adapted version of DADA2 for analyzing amplicon sequencing data from synthetic communities (SynComs), where the reference sequences for each strain exists. Rbec can not only accurately profile the microbial compositions in SynComs, but also predict the contaminants in SynCom samples.
Use A Resampling-Based Empirical Bayes Approach to Assess Differential Expression in Two-Color Microarrays and RNA-Seq data sets.
Improves simultaneous inference under dependence of tests by estimating a collapsed null distribution through resampling. Accounting for the dependence between tests increases the power while reducing the variability of the false discovery proportion. This dependence is common in genomics applications, e.g. when combining flow cytometry measurements with microbiome sequence counts.
This package provides a Redis-based back-end for BiocParallel, enabling an alternative mechanism for distributed computation. The The manager distributes tasks to a worker pool through a central Redis server, rather than directly to workers as with other BiocParallel implementations. This means that the worker pool can change dynamically during job evaluation. All features of BiocParallel are supported, including reproducible random number streams, logging to the manager, and alternative load balancing task distributions.
This package provides functionality for reading data from HDF Scalable Data Service from within R. The HSDSArray function bridges from HSDS to the user via the DelayedArray interface. Bioconductor manages an open HSDS instance graciously provided by John Readey of the HDF Group.
Codelink Rat Whole Genome Bioarray (~34 000 rat gene targets) annotation data (chip rwgcod) assembled using data from public repositories.
Package provides miRNASeq datasets from The Cancer Genome Atlas Project for all available cohorts types from http://gdac.broadinstitute.org/. Data format is explained here https://wiki.nci.nih.gov/display/TCGA/miRNASeq#miRNASeq-DataOverview Data from 2015-11-01 snapshot.
Affymetrix ragene10 annotation data (chip ragene10sttranscriptcluster) assembled using data from public repositories.
RTNsurvival is a tool for integrating regulons generated by the RTN package with survival information. For a given regulon, the 2-tailed GSEA approach computes a differential Enrichment Score (dES) for each individual sample, and the dES distribution of all samples is then used to assess the survival statistics for the cohort. There are two main survival analysis workflows: a Cox Proportional Hazards approach used to model regulons as predictors of survival time, and a Kaplan-Meier analysis assessing the stratification of a cohort based on the regulon activity. All plots can be fine-tuned to the user's specifications.