Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for systematically exploring large quantities of temporal data across cyclic temporal granularities (deconstructions of time) by visualizing probability distributions. Cyclic time granularities can be circular, quasi-circular or aperiodic. gravitas computes cyclic single-order-up or multiple-order-up granularities, check the feasibility of creating plots for any two cyclic granularities and recommend probability distributions plots for exploring periodicity in the data.
Geoms for placing arrowheads at multiple points along a segment, not just at the end; position function to shift starts and ends of arrows to avoid exactly intersecting points.
The goal of GHCNr is to provide a fast and friendly interface with the Global Historical Climatology Network daily (GHCNd) database, which contains daily summaries of weather station data worldwide (<https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily>). GHCNd is accessed through the web API <https://www.ncei.noaa.gov/access/services/data/v1>. GHCNr main functionalities consist of downloading data from GHCNd, filter it, and to aggregate it at monthly and annual scales.
Comparing two independent or paired groups across a range of descriptive statistics, enabling the evaluation of potential differences in central tendency (mean, median), dispersion (variance, interquartile range), shape (skewness, kurtosis), and distributional characteristics (various quantiles). The analytical framework incorporates parametric t-tests, non-parametric Wilcoxon tests, permutation tests, and bootstrap resampling techniques to assess the statistical significance of observed differences.
Generalization of supervised principal component regression (SPCR; Bair et al., 2006, <doi:10.1198/016214505000000628>) to support continuous, binary, and discrete variables as outcomes and predictors (inspired by the superpc R package <https://cran.r-project.org/package=superpc>).
Supplies a set of functions to interface with bikeshare data following the General Bikeshare Feed Specification, allowing users to query and accumulate tidy datasets for specified cities/bikeshare programs.
Applies sequential clustering algorithm to animal location data based on user-defined parameters. Plots interactive cluster maps and provides a summary dataframe with attributes for each cluster commonly used as covariates in subsequent modeling efforts. Additional functions provide individual keyhole markup language plots for quick assessment, and export of global positioning system exchange format files for navigation purposes. Methods can be found at <doi:10.1111/2041-210X.13572>.
This package contains the framework of the estimation, sampling, and hypotheses testing for two special distributions (Exponentiated Exponential-Pareto and Exponentiated Inverse Gamma-Pareto) within the family of Generalized Exponentiated Composite distributions. The detailed explanation and the applications of these two distributions were introduced in Bowen Liu, Malwane M.A. Ananda (2022) <doi:10.1080/03610926.2022.2050399>, Bowen Liu, Malwane M.A. Ananda (2022) <doi:10.3390/math10111895>, and Bowen Liu, Malwane M.A. Ananda (2022) <doi:10.3390/app13010645>.
An interface to the Gmail RESTful API. Allows access to your Gmail messages, threads, drafts and labels.
The Grouphmap was implemented in R, an open-source programming environment, and was released under the provided website. The difference analysis is based on the limma package, which can cover gene and protein expression profiles (Reference: Matthew E Ritchie , Belinda Phipson , Di Wu , Yifang Hu , Charity W Law , Wei Shi , Gordon K Smyth (2015) <doi:10.1093/nar/gkv007>). The GO enrichment analysis is based on the clusterProfiler package and supports three common species: human, mouse, and yeast (Reference: Guangchuang Yu, Li-Gen Wang, Yanyan Han, Qing-Yu He (2012) <doi:10.1089/omi.2011.0118>). The results of batch difference analysis and enrichment analysis are output in separate folders for easy viewing and further visualization of the results during the process. The results returned a heatmap in R and exported to 3 folders named DEG, go, and merge.
We provides functions that employ splines to estimate generalized partially linear single index models (GPLSIM), which extend the generalized linear models to include nonlinear effect for some predictors. Please see Y. (2017) at <doi:10.1007/s11222-016-9639-0> and Y., and R. (2002) at <doi:10.1198/016214502388618861> for more details.
Grey zones locally occur in an agreement table due to the subjective evaluation of raters based on various factors such as not having uniform guidelines, the differences between the raters level of expertise or low variability among the level of the categorical variable. It is important to detect grey zones since they cause a negative bias in the estimate of the agreement level. This package provides a function for detecting the existence of grey zones in two-way inter-rater agreement tables (Demirhan and Yilmaz (2023) <doi:10.1186/s12874-022-01759-7>).
This package provides an R interface to the GeoServer REST API, allowing to upload and publish data in a GeoServer web-application and expose data to OGC Web-Services. The package currently supports all CRUD (Create,Read,Update,Delete) operations on GeoServer workspaces, namespaces, datastores (stores of vector data), featuretypes, layers, styles, as well as vector data upload operations. For more information about the GeoServer REST API, see <https://docs.geoserver.org/stable/en/user/rest/>.
D&D alignment charts show 9 boxes with values for good through evil and values for chaotic through lawful. This package easily creates these alignment charts from user-provided image paths and alignment values.
This package implements genetic algorithm and particle swarm algorithm for real-valued functions. Various modifications (including hybridization and elitism) of these algorithms are provided. Implemented functions are based on ideas described in S. Katoch, S. Chauhan, V. Kumar (2020) <doi:10.1007/s11042-020-10139-6> and M. Clerc (2012) <https://hal.archives-ouvertes.fr/hal-00764996>.
Functional denoising and functional ANOVA through wavelet-domain Markov groves. Fore more details see: Ma L. and Soriano J. (2018) Efficient functional ANOVA through wavelet-domain Markov groves. <arXiv:1602.03990v2 [stat.ME]>.
Implementation of global envelopes for a set of general d-dimensional vectors T in various applications. A 100(1-alpha)% global envelope is a band bounded by two vectors such that the probability that T falls outside this envelope in any of the d points is equal to alpha. Global means that the probability is controlled simultaneously for all the d elements of the vectors. The global envelopes can be used for graphical Monte Carlo and permutation tests where the test statistic is a multivariate vector or function (e.g. goodness-of-fit testing for point patterns and random sets, functional analysis of variance, functional general linear model, n-sample test of correspondence of distribution functions), for central regions of functional or multivariate data (e.g. outlier detection, functional boxplot) and for global confidence and prediction bands (e.g. confidence band in polynomial regression, Bayesian posterior prediction). See Myllymäki and MrkviÄ ka (2024) <doi:10.18637/jss.v111.i03>, Myllymäki et al. (2017) <doi:10.1111/rssb.12172>, MrkviÄ ka and Myllymäki (2023) <doi:10.1007/s11222-023-10275-7>, MrkviÄ ka et al. (2016) <doi:10.1016/j.spasta.2016.04.005>, MrkviÄ ka et al. (2017) <doi:10.1007/s11222-016-9683-9>, MrkviÄ ka et al. (2020) <doi:10.14736/kyb-2020-3-0432>, MrkviÄ ka et al. (2021) <doi:10.1007/s11009-019-09756-y>, Myllymäki et al. (2021) <doi:10.1016/j.spasta.2020.100436>, MrkviÄ ka et al. (2022) <doi:10.1002/sim.9236>, Dai et al. (2022) <doi:10.5772/intechopen.100124>, DvoŠák and MrkviÄ ka (2022) <doi:10.1007/s00180-021-01134-y>, MrkviÄ ka et al. (2023) <doi:10.48550/arXiv.2309.04746>, and Konstantinou et al. (2024) <doi: 10.1007/s00180-024-01569-z>.
Write SARIMA models in (finite) AR representation and simulate generalized multiplicative seasonal autoregressive moving average (time) series with Normal / Gaussian, Poisson or negative binomial distribution. The methodology of this method is described in Briet OJT, Amerasinghe PH, and Vounatsou P (2013) <doi:10.1371/journal.pone.0065761>.
Turn irregular polygons (such as geographical regions) into regular or hexagonal grids. This package enables the generation of regular (square) and hexagonal grids through the package sp and then assigns the content of the existing polygons to the new grid using the Hungarian algorithm, Kuhn (1955) (<doi:10.1007/978-3-540-68279-0_2>). This prevents the need for manual generation of hexagonal grids or regular grids that are supposed to reflect existing geography.
Implementation of a common set of punctual solutions for Cooperative Game Theory.
This package provides a suite of function-building tools centered around a (forward) composition operator, %>>>%, which extends the semantics of the magrittr %>% operator and supports Tidyverse quasiquotation. It enables you to construct composite functions that can be inspected and transformed as list-like objects. In conjunction with %>>>%, a compact function constructor, fn(), and a partial-application constructor, partial(), are also provided; both support quasiquotation.
Efficient computation of likelihoods in design-based choice response time models, including the Decision Diffusion Model, is supported. The package enables rapid evaluation of likelihood functions for both single- and multi-subject models across trial-level data. It also offers fast initialisation of starting parameters for genetic sampling with many Markov chains, facilitating estimation in complex models typically found in experimental psychology and behavioural science. These optimisations help reduce computational overhead in large-scale model fitting tasks.
Gradient-Enhanced Kriging as an emulator for computer experiments based on Maximum-Likelihood estimation.
This package provides tools for specifying and evaluating standard and truncated probability distributions, with support for log-space computation and joint distribution specification. It enables Bayesian computation for cognition models and includes utilities for density calculation, sampling, and visualisation, facilitating prior distribution specification and model assessment in hierarchical Bayesian frameworks.