Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
For when your colors absolutely should not be excluded from the narrative.
Automates translating the instructions of iatgen generated qsf (Qualtrics survey files) to other languages using either officially supported or user-supplied translations (for tutorial see Santos et al., 2023 <doi:10.17504/protocols.io.kxygx34jdg8j/v1>).
This package provides tools for the exploration of distributions of phylogenetic trees. This package includes a shiny interface which can be started from R using treespaceServer(). For further details see Jombart et al. (2017) <DOI:10.1111/1755-0998.12676>.
This package provides a teal_data class as a unified data model for teal applications focusing on reproducibility and relational data.
This package provides functions for managing cashflows and interest rate curves.
This package provides a comprehensive toolset for any useR conducting topological data analysis, specifically via the calculation of persistent homology in a Vietoris-Rips complex. The tools this package currently provides can be conveniently split into three main sections: (1) calculating persistent homology; (2) conducting statistical inference on persistent homology calculations; (3) visualizing persistent homology and statistical inference. The published form of TDAstats can be found in Wadhwa et al. (2018) <doi:10.21105/joss.00860>. For a general background on computing persistent homology for topological data analysis, see Otter et al. (2017) <doi:10.1140/epjds/s13688-017-0109-5>. To learn more about how the permutation test is used for nonparametric statistical inference in topological data analysis, read Robinson & Turner (2017) <doi:10.1007/s41468-017-0008-7>. To learn more about how TDAstats calculates persistent homology, you can visit the GitHub repository for Ripser, the software that works behind the scenes at <https://github.com/Ripser/ripser>. This package has been published as Wadhwa et al. (2018) <doi:10.21105/joss.00860>.
Build customized transfer function and ARIMA models with multiple operators and parameter restrictions. Provides tools for model identification, estimation using exact or conditional maximum likelihood, diagnostic checking, automatic outlier detection, calendar effects, forecasting, and seasonal adjustment. The new version also supports unobserved component ARIMA model specification and estimation for structural time series analysis.
When using the R package exams to write mathematics questions in Sweave files, the output of a lot of R functions need to be adjusted for display in mathematical formulas. Specifically, the functions were accumulated when writing questions for the topics of the mathematics courses College Algebra, Precalculus, Calculus, Differential Equations, Introduction to Probability, and Linear Algebra. The output of the developed functions can be used in Sweave files.
This package provides a general framework of two directional simultaneous inference is provided for high-dimensional as well as the fixed dimensional models with manifest variable or latent variable structure, such as high-dimensional mean models, high- dimensional sparse regression models, and high-dimensional latent factors models. It is making the simultaneous inference on a set of parameters from two directions, one is testing whether the estimated zero parameters indeed are zero and the other is testing whether there exists zero in the parameter set of non-zero. More details can be referred to Wei Liu, et al. (2022) <doi:10.48550/arXiv.2012.11100>.
Dimensionality reduction (DR) is widely used in many domain for analyzing and visualizing high-dimensional data. tidydr provides uniform output and is compatible with multiple methods, including prcomp', mds', Rtsne'. etc.
Uplift modeling aims at predicting the causal effect of an action such as a marketing campaign on a particular individual. In order to simplify the task for practitioners in uplift modeling, we propose a combination of tools that can be separated into the following ingredients: i) quantization, ii) visualization, iii) variable selection, iv) parameters estimation and, v) model validation. For more details, see <https://dms.umontreal.ca/~murua/research/UpliftRegression.pdf>.
Construction of the Total Operating Characteristic (TOC) Curve and the Receiver (aka Relative) Operating Characteristic (ROC) Curve for spatial and non-spatial data. The TOC method is a modification of the ROC method which measures the ability of an index variable to diagnose either presence or absence of a characteristic. The diagnosis depends on whether the value of an index variable is above a threshold. Each threshold generates a two-by-two contingency table, which contains four entries: hits (H), misses (M), false alarms (FA), and correct rejections (CR). While ROC shows for each threshold only two ratios, H/(H + M) and FA/(FA + CR), TOC reveals the size of every entry in the contingency table for each threshold (Pontius Jr., R.G., Si, K. 2014. <doi:10.1080/13658816.2013.862623>).
Deconvolving thermoluminescence glow curves according to various kinetic models (first-order, second-order, general-order, and mixed-order) using a modified Levenberg-Marquardt algorithm (More, 1978) <DOI:10.1007/BFb0067700>. It provides the possibility of setting constraints or fixing any of parameters. It offers an interactive way to initialize parameters by clicking with a mouse on a plot at positions where peak maxima should be located. The optimal estimate is obtained by "trial-and-error". It also provides routines for simulating first-order, second-order, and general-order glow peaks.
Implementation of target diagrams using lattice and ggplot2 graphics. Target diagrams provide a graphical overview of the respective contributions of the unbiased RMSE and MBE to the total RMSE (Jolliff, J. et al., 2009. "Summary Diagrams for Coupled Hydrodynamic-Ecosystem Model Skill Assessment." Journal of Marine Systems 76: 64รข 82.).
This package provides tools for Topological Data Analysis. The package focuses on statistical analysis of persistent homology and density clustering. For that, this package provides an R interface for the efficient algorithms of the C++ libraries GUDHI <https://project.inria.fr/gudhi/software/>, Dionysus <https://www.mrzv.org/software/dionysus/>, and PHAT <https://bitbucket.org/phat-code/phat/>. This package also implements methods from Fasy et al. (2014) <doi:10.1214/14-AOS1252> and Chazal et al. (2015) <doi:10.20382/jocg.v6i2a8> for analyzing the statistical significance of persistent homology features.
This package provides a set of functions to implement Time Series Cointegrated System (TSCS) spatial interpolation and relevant data visualization.
This package provides a user friendly interface to generation of booktab style tables using xtable'.
Calculates the robust Taba linear, Taba rank (monotonic), TabWil, and TabWil rank correlations. Test statistics as well as one sided or two sided p-values are provided for all correlations. Multiple correlations and p-values can be calculated simultaneously across multiple variables. In addition, users will have the option to use the partial, semipartial, and generalized partial correlations; where the partial and semipartial correlations use linear, logistic, or Poisson regression to modify the specified variable.
This package implements sentiment analysis using huggingface <https://huggingface.co> transformer zero-shot classification model pipelines for text and image data. The default text pipeline is Cross-Encoder's DistilRoBERTa <https://huggingface.co/cross-encoder/nli-distilroberta-base> and default image/video pipeline is Open AI's CLIP <https://huggingface.co/openai/clip-vit-base-patch32>. All other zero-shot classification model pipelines can be implemented using their model name from <https://huggingface.co/models?pipeline_tag=zero-shot-classification>.
Analyzing treatment effects in clinical trials with time-to-event outcomes is complicated by intercurrent events. This package implements methods for estimating and inferring the cumulative incidence functions for time-to-event (TTE) outcomes with intercurrent events (ICEs) under the five strategies outlined in the ICH E9 (R1) addendum, see Deng (2025)<doi:10.1002/sim.70091>. This package can be used for analyzing data from both randomized controlled trials and observational studies. In general, we have a primary outcome event and possibly an intercurrent event. Two data structures are allowed: competing risks, where only the time to the first event is recorded, and semicompeting risks, where the times to both the primary outcome event and intercurrent event (or censoring) are recorded. For estimation methods, users can choose nonparametric estimation (which does not use covariates) and semiparametrically efficient estimation.
Handles truncated members from the exponential family of probability distributions. Contains functions such as rtruncnorm() and dtruncpois(), which are truncated versions of rnorm() and dpois() from the stats package that also offer richer output containing, for example, the distribution parameters. It also provides functions to retrieve the original distribution parameters from a truncated sample by maximum-likelihood estimation.
R implementation of TFactS to predict which are the transcription factors (TFs), regulated in a biological condition based on lists of differentially expressed genes (DEGs) obtained from transcriptome experiments. This package is based on the TFactS concept by Essaghir et al. (2010) <doi:10.1093/nar/gkq149> and expands it. It allows users to perform TFactS'-like enrichment approach. The package can import and use the original catalogue file from the TFactS as well as users defined catalogues of interest that are not supported by TFactS (e.g., Arabidopsis).
Collect marketing data from TikTok Ads using the Windsor.ai API <https://windsor.ai/api-fields/>.
Providing new german-wide TapeR Models and functions for their evaluation. Included are the most common tree species in Germany (Norway spruce, Scots pine, European larch, Douglas fir, Silver fir as well as European beech, Common/Sessile oak and Red oak). Many other species are mapped to them so that 36 tree species / groups can be processed. Single trees are defined by species code, one or multiple diameters in arbitrary measuring height and tree height. The functions then provide information on diameters along the stem, bark thickness, height of diameters, volume of the total or parts of the trunk and total and component above-ground biomass. It is also possible to calculate assortments from the taper curves. Uncertainty information is provided for diameter, volume and component biomass estimation.