Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements the fused lasso additive model as proposed in Petersen, A., Witten, D., and Simon, N. (2016). Fused Lasso Additive Model. Journal of Computational and Graphical Statistics, 25(4): 1005-1025.
Fast and flexible Kalman filtering and smoothing implementation utilizing sequential processing, designed for efficient parameter estimation through maximum likelihood estimation. Sequential processing is a univariate treatment of a multivariate series of observations and can benefit from computational efficiency over traditional Kalman filtering when independence is assumed in the variance of the disturbances of the measurement equation. Sequential processing is described in the textbook of Durbin and Koopman (2001, ISBN:978-0-19-964117-8). FKF.SP was built upon the existing FKF package and is, in general, a faster Kalman filter/smoother.
Fits the lifespan datasets of biological systems such as yeast, fruit flies, and other similar biological units with well-known finite mixture models introduced by Farewell V. (1982) <doi:10.2307/2529885> and Al-Hussaini et al. (2000) <doi:10.1080/00949650008812033>. Estimates parameter space fitting of a lifespan dataset with finite mixtures of parametric distributions. Computes the following tasks; 1) Estimates parameter space of the finite mixture model by implementing the expectation maximization (EM) algorithm. 2) Finds a sequence of four goodness-of-fit measures consist of Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Kolmogorov-Smirnov (KS), and log-likelihood (log-likelihood) statistics. 3)The initial values is determined by k-means clustering.
This package contains a set of functions that can be used to apply formats to data frames or vectors. The package aims to provide functionality similar to that of SAS® formats. Formats are assigned to the format attribute on data frame columns. Then when the fdata() function is called, a new data frame is created with the column data formatted as specified. The package also contains a value() function to create a user-defined format, similar to a SAS® user-defined format.
Automatically process Fluorescence Recovery After Photobleaching (FRAP) data and generate consistent, publishable figures. Note: this package does not replace ImageJ (or its equivalence) in raw image quantification. Some references about the methods: Sprague, Brian L. (2004) <doi:10.1529/biophysj.103.026765>; Day, Charles A. (2012) <doi:10.1002/0471142956.cy0219s62>.
This package provides a collection of datasets essential for functional genomic analysis. Gene names, gene positions, cytoband information, sourced from Ensembl and phenotypes association graph prepared from GWAScatalog are included. Data is available in both GRCh37 and 38 builds. These datasets facilitate a wide range of genomic studies, including the identification of genetic variants, exploration of genomic features, and post-GWAS functional analysis.
The functions provided in the FADA (Factor Adjusted Discriminant Analysis) package aim at performing supervised classification of high-dimensional and correlated profiles. The procedure combines a decorrelation step based on a factor modeling of the dependence among covariates and a classification method. The available methods are Lasso regularized logistic model (see Friedman et al. (2010)), sparse linear discriminant analysis (see Clemmensen et al. (2011)), shrinkage linear and diagonal discriminant analysis (see M. Ahdesmaki et al. (2010)). More methods of classification can be used on the decorrelated data provided by the package FADA.
This package provides a drop-in replacement for flexdashboard Rmd documents, which implements an after-knit-hook to split the generated single page application in one document per main section to reduce rendering load in the web browser displaying the document. Put all JavaScript stuff needed in all sections before the first headline featuring navigation menu attributes. This package is experimental and maybe replaced by a solution inside flexdashboard'.
This package provides several functions to create and manipulate fuzzy cognitive maps. It is based on FCMapper for Excel, distributed at <http:// www.fcmappers.net/joomla/>, developed by Michael Bachhofer and Martin Wildenberg. Maps are inputted as adjacency matrices. Attributes of the maps and the equilibrium values of the concepts (including with user-defined constrained values) can be calculated. The maps can be graphed with a function that calls igraph'. Multiple maps with shared concepts can be aggregated.
YACFP (Yet Another Convenience Function Package). get_age() is a fast & accurate tool for measuring fractional years between two dates. stale_package_check() tries to identify any library() calls to unused packages.
Parse static-chamber greenhouse gas measurement files generated by a variety of instruments; compute flux rates using multi-observation metadata; and generate diagnostic metrics and plots. Designed to be easy to integrate into reproducible scientific workflows.
Fits Weibull or sigmoidal models to percent loss conductivity (plc) curves as a function of plant water potential, computes confidence intervals of parameter estimates and predictions with bootstrap or parametric methods, and provides convenient plotting methods.
This package contains financial math functions and introductory derivative functions included in the Society of Actuaries and Casualty Actuarial Society Financial Mathematics exam, and some topics in the Models for Financial Economics exam.
R shiny app to perform data analysis and visualization for the Fully Automated Senescence Test (FAST) workflow.
Multiple testing procedures for heterogeneous and discrete tests as described in Döhler and Roquain (2020) <doi:10.1214/20-EJS1771>. The main algorithms of the paper are available as continuous, discrete and weighted versions. They take as input the results of a test procedure from package DiscreteTests', or a set of observed p-values and their discrete support under their nulls. A shortcut function to obtain such p-values and supports is also provided, along with wrappers allowing to apply discrete procedures directly to data.
Connection to the Fitbit Web API <https://dev.fitbit.com/build/reference/web-api/> by including ggplot2 Visualizations, Leaflet and 3-dimensional Rayshader Maps. The 3-dimensional Rayshader Map requires the installation of the CopernicusDEM R package which includes the 30- and 90-meter elevation data.
Classical (bottom-up and top-down), optimal combination and heuristic point (Di Fonzo and Girolimetto, 2023 <doi:10.1016/j.ijforecast.2021.08.004>) and probabilistic (Girolimetto et al. 2024 <doi:10.1016/j.ijforecast.2023.10.003>) forecast reconciliation procedures for linearly constrained time series (e.g., hierarchical or grouped time series) in cross-sectional, temporal, or cross-temporal frameworks.
Social Relations Analysis with roles ("Family SRM") are computed, using a structural equation modeling approach. Groups ranging from three members up to an unlimited number of members are supported and the mean structure can be computed. Means and variances can be compared between different groups of families and between roles.
FamSKAT-RC is a family-based association kernel test for both rare and common variants. This test is general and several special cases are known as other methods: famSKAT, which only focuses on rare variants in family-based data, SKAT, which focuses on rare variants in population-based data (unrelated individuals), and SKAT-RC, which focuses on both rare and common variants in population-based data. When one applies famSKAT-RC and sets the value of phi to 1, famSKAT-RC becomes famSKAT. When one applies famSKAT-RC and set the value of phi to 1 and the kinship matrix to the identity matrix, famSKAT-RC becomes SKAT. When one applies famSKAT-RC and set the kinship matrix (fullkins) to the identity matrix (and phi is not equal to 1), famSKAT-RC becomes SKAT-RC. We also include a small sample synthetic pedigree to demonstrate the method with. For more details see Saad M and Wijsman EM (2014) <doi:10.1002/gepi.21844>.
Processes data from The Social Networks and Fertility Survey, downloaded from <https://dataarchive.lissdata.nl>, including correcting respondent errors and transforming network data into network objects to facilitate analyses and visualisation.
This package provides implementation of statistical methods for random objects lying in various metric spaces, which are not necessarily linear spaces. The core of this package is Fréchet regression for random objects with Euclidean predictors, which allows one to perform regression analysis for non-Euclidean responses under some mild conditions. Examples include distributions in 2-Wasserstein space, covariance matrices endowed with power metric (with Frobenius metric as a special case), Cholesky and log-Cholesky metrics, spherical data. References: Petersen, A., & Müller, H.-G. (2019) <doi:10.1214/17-AOS1624>.
The fusion learning method uses a model selection algorithm to learn from multiple data sets across different experimental platforms through group penalization. The responses of interest may include a mix of discrete and continuous variables. The responses may share the same set of predictors, however, the models and parameters differ across different platforms. Integrating information from different data sets can enhance the power of model selection. Package is based on Xin Gao, Raymond J. Carroll (2017) <arXiv:1610.00667v1>.
This package performs robust multiple testing for means in the presence of known and unknown latent factors presented in Fan et al.(2019) "FarmTest: Factor-Adjusted Robust Multiple Testing With Approximate False Discovery Control" <doi:10.1080/01621459.2018.1527700>. Implements a series of adaptive Huber methods combined with fast data-drive tuning schemes proposed in Ke et al.(2019) "User-Friendly Covariance Estimation for Heavy-Tailed Distributions" <doi:10.1214/19-STS711> to estimate model parameters and construct test statistics that are robust against heavy-tailed and/or asymmetric error distributions. Extensions to two-sample simultaneous mean comparison problems are also included. As by-products, this package contains functions that compute adaptive Huber mean, covariance and regression estimators that are of independent interest.
Calculate useful quantities for a user-defined differential equation model of infectious disease transmission among individuals in a healthcare facility. Input rates of transition between states of individuals with and without the disease-causing organism, distributions of states at facility admission, relative infectivity of transmissible states, and the facility length of stay distribution. Calculate the model equilibrium and the basic facility reproduction number, as described in Toth et al. (2025) <doi:10.1371/journal.pcbi.1013577>.