Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This reduced piecewise exponential survival software implements the likelihood ratio test and backward elimination procedure in Han, Schell, and Kim (2012 <doi:10.1080/19466315.2012.698945>, 2014 <doi:10.1002/sim.5915>), and Han et al. (2016 <doi:10.1111/biom.12590>). Inputs to the program can be either times when events/censoring occur or the vectors of total time on test and the number of events. Outputs of the programs are times and the corresponding p-values in the backward elimination. Details about the model and implementation are given in Han et al. 2014. This program can run in R version 3.2.2 and above.
Point and interval estimation of linear parameters with data obtained from complex surveys (including stratified and clustered samples) when randomization techniques are used. The randomized response technique was developed to obtain estimates that are more valid when studying sensitive topics. Estimators and variances for 14 randomized response methods for qualitative variables and 7 randomized response methods for quantitative variables are also implemented. In addition, some data sets from surveys with these randomization methods are included in the package.
An HTTP API client for Lemmy (<https://github.com/LemmyNet/lemmy>) in R. Code and documentation are generated from the official JavaScript client source (<https://github.com/LemmyNet/lemmy-js-client>).
Helps fisheries scientists collect measurements from calcified structures and back-calculate estimated lengths at previous ages using standard procedures and models. This is intended to replace much of the functionality provided by the now out-dated fishBC software (<https://fisheries.org/bookstore/all-titles/software/70317/>).
Various statistical and mathematical ranking and rating methods with incomplete information are included. This package is initially designed for the scoring system in a high school project showcase to rank student research projects, where each judge can only evaluate a set of projects in a limited time period. See Langville, A. N. and Meyer, C. D. (2012), Who is Number 1: The Science of Rating and Ranking, Princeton University Press <doi:10.1515/9781400841677>, and Gou, J. and Wu, S. (2020), A Judging System for Project Showcase: Rating and Ranking with Incomplete Information, Technical Report.
Implementation of hash tables (hash sets and hash maps) in R, featuring arbitrary R objects as keys, arbitrary hash and key-comparison functions, and customizable behaviour upon queries of missing keys.
This package contains various tools to perform and visualize Response Item Networks ('ResIN's'). ResIN binarizes ordered-categorical and qualitative response choices from (survey) data, calculates pairwise associations and maps the location of each item response as a node in a force-directed network. Please refer to <https://www.resinmethod.net/> for more details.
By using RAINBOWR (Reliable Association INference By Optimizing Weights with R), users can test multiple SNPs (Single Nucleotide Polymorphisms) simultaneously by kernel-based (SNP-set) methods. This package can also be applied to haplotype-based GWAS (Genome-Wide Association Study). Users can test not only additive effects but also dominance and epistatic effects. In detail, please check our paper on PLOS Computational Biology: Kosuke Hamazaki and Hiroyoshi Iwata (2020) <doi:10.1371/journal.pcbi.1007663>.
Generate random positions (latitude/longitude), Well-known text ('WKT') points or polygons, or GeoJSON points or polygons.
Despite the predominant use of R for data manipulation and various robust statistical calculations, in recent years, more people from various disciplines are beginning to use R for other purposes. In doing this seemlessly, further tools are needed users to easily and freely write in R for all kinds of purposes. The r2dictionary introduces a means for users to directly search for definitions of terms within the R environment.
This package provides functions for implementing robust methods for functional linear regression. In the functional linear regression, we consider scalar-on-function linear regression and function-on-function linear regression.
The algorithm provided in this package generates perfect sample for unimodal or multimodal posteriors. Read Once Coupling From The Past, with Metropolis-Multishift is used to generate a perfect sample for a given posterior density based on the two extreme starting paths, minimum and maximum of the most interest range of the posterior. It uses the monotone random operation of multishift coupler which allows to sandwich all of the state space in one point. It means both Markov Chains starting from the maximum and minimum will be coalesced. The generated sample is independent from the starting points. It is useful for mixture distributions too. The output of this function is a real value as an exact draw from the posterior distribution.
R Markdown format for reveal.js presentations, a framework for easily creating beautiful presentations using HTML.
Simple methods to generate attractive random colors. The random colors are from a wrapper of randomColor.js <https://github.com/davidmerfield/randomColor>. In addition, it also generates optimally distinct colors based on k-means (inspired by IWantHue <https://github.com/medialab/iwanthue>).
The RJDBC package is an implementation of R's DBI interface using JDBC as a back-end. This allows R to connect to any DBMS that has a JDBC driver.
This RSKC package contains a function RSKC which runs the robust sparse K-means clustering algorithm.
This is a port of Jonathan Shewchuk's Triangle library to R. From his description: "Triangle generates exact Delaunay triangulations, constrained Delaunay triangulations, conforming Delaunay triangulations, Voronoi diagrams, and high-quality triangular meshes. The latter can be generated with no small or large angles, and are thus suitable for finite element analysis.".
This package provides a simple set of wrappers to easily use RDCOMClient for generating Microsoft PowerPoint presentations. Warning:this package is soon to be archived from CRAN.
R implementation of the FAIR Data Pipeline API'. The FAIR Data Pipeline is intended to enable tracking of provenance of FAIR (findable, accessible and interoperable) data used in epidemiological modelling.
This package provides a suite of tools useful to read, visualize and export bivariate motion energy time-series. Lagged synchrony between subjects can be analyzed through windowed cross-correlation. Surrogate data generation allows an estimation of pseudosynchrony that helps to estimate the effect size of the observed synchronization. Kleinbub, J. R., & Ramseyer, F. T. (2020). rMEA: An R package to assess nonverbal synchronization in motion energy analysis time-series. Psychotherapy research, 1-14. <doi:10.1080/10503307.2020.1844334>.
Three-step regression and inference for cellwise and casewise contamination.
Recursive display of names and paths of all the items nested within sublists of a list object.
Distance-sampling (<doi:10.1007/978-3-319-19219-2>) is a field survey and analytical method that estimates density and abundance of survey targets (e.g., animals) when detection probability declines with observation distance. Distance-sampling is popular in ecology, especially when survey targets are observed from aerial platforms (e.g., airplane or drone), surface vessels (e.g., boat or truck), or along walking transects. Analysis involves fitting smooth (parametric) curves to histograms of observation distances and using those functions to adjust density estimates for missed targets. Routines included here fit curves to observation distance histograms, estimate effective sampling area, density of targets in surveyed areas, and the abundance of targets in a surrounding study area. Confidence interval estimation uses built-in bootstrap resampling. Help files are extensive and have been vetted by multiple authors. Many tutorials are available on the package's website (URL below).
Enhances the R Optimization Infrastructure ('ROI') package by registering the free GLPK solver. It allows for solving mixed integer linear programming ('MILP') problems as well as all variants/combinations of LP', IP'.