Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
In repeated measures studies with extreme large or small values it is common that the subjects measurements on average are closer to the mean of the basic population. Interpreting possible changes in the mean in such situations can lead to biased results since the values were not randomly selected, they come from truncated sampling. This method allows to estimate the range of means where treatment effects are likely to occur when regression toward the mean is present. Ostermann, T., Willich, Stefan N. & Luedtke, Rainer. (2008). Regression toward the mean - a detection method for unknown population mean based on Mee and Chua's algorithm. BMC Medical Research Methodology.<doi:10.1186/1471-2288-8-52>. Acknowledgments: We would like to acknowledge "Lena Roth" and "Nico Steckhan" for the package's initial updates (Q3 2024) and continued supervision and guidance. Both have contributed to discussing and integrating these methods into the package, ensuring they are up-to-date and contextually relevant.
Supports calculations and visualization for renewable power systems and the environment. Analysis and graphical tools for DC and AC circuits and their use in electric power systems. Analysis and graphical tools for thermodynamic cycles and heat engines, supporting efficiency calculations in coal-fired power plants, gas-fired power plants. Calculations of carbon emissions and atmospheric CO2 dynamics. Analysis of power flow and demand for the grid, as well as power models for microgrids and off-grid systems. Provides resource and power generation for hydro power, wind power, and solar power.
The R equivalent of nodemon'. Watches specified directories for file changes and reruns a designated R script when changes are detected. It's designed to automate the process of reloading your R applications during development, similar to nodemon for Node.js'.
Linear regression functions using Huber and bisquare psi functions. Optimal weights are calculated using IRLS algorithm.
This package implements the hierarchical Bayesian analysis of populations structure (hierBAPS) algorithm of Cheng et al. (2013) <doi:10.1093/molbev/mst028> for clustering DNA sequences from multiple sequence alignments in FASTA format. The implementation includes improved defaults and plotting capabilities and unlike the original MATLAB version removes singleton SNPs by default.
Some extensions to Rcmdr (R Commander), randomness test, variance test for one normal sample and predictions using active model, made by R-UCA project and used in teaching statistics at University of Cadiz (UCA).
This package provides two general frameworks to generate a multi-layer network. This also provides several methods to reveal the embedding of both nodes and layers. The reference paper can be found from the URL mentioned below. Ting Li, Zhongyuan Lyu, Chenyu Ren, Dong Xia (2023) <arXiv:2302.04437>.
Read, write and manipulate Praat TextGrid, PitchTier, Pitch, IntensityTier, Formant, Sound, and Collection files <https://www.fon.hum.uva.nl/praat/>.
This package provides methods readMat() and writeMat() for reading and writing MAT files. For user with MATLAB v6 or newer installed (either locally or on a remote host), the package also provides methods for controlling MATLAB (trademark) via R and sending and retrieving data between R and MATLAB.
Allows the user to access functionality in the CDK', a Java framework for cheminformatics. This allows the user to load molecules, evaluate fingerprints, calculate molecular descriptors and so on. In addition, the CDK API allows the user to view structures in 2D.
NCL (NCAR Command Language) is one of the most popular spatial data mapping tools in meteorology studies, due to its beautiful output figures with plenty of color palettes designed by experts <https://www.ncl.ucar.edu/index.shtml>. Here we translate all NCL color palettes into R hexadecimal RGB colors and provide color selection function, which will help users make a beautiful figure.
This package performs Random Subspace Method (RSM) for high-dimensional linear regression to obtain variable importance measures. The final model is chosen based on validation set or Generalized Information Criterion.
Implementation of the Robust Gauss-Newton (RGN) algorithm, designed for solving optimization problems with a sum of least squares objective function. For algorithm details please refer to Qin et. al. (2018) <doi:10.1029/2017WR022488>.
Transform coordinates from a specified source to a specified target map projection. This uses the PROJ library directly, by wrapping the PROJ package which leverages libproj', otherwise the proj4 package. The reproj() function is generic, methods may be added to remove the need for an explicit source definition. If proj4 is in use reproj() handles the requirement for conversion of angular units where necessary. This is for use primarily to transform generic data formats and direct leverage of the underlying PROJ library. (There are transformations that aren't possible with PROJ and that are provided by the GDAL library, a limitation which users of this package should be aware of.) The PROJ library is available at <https://proj.org/>.
Allows the user to conduct randomization-based inference for a wide variety of experimental scenarios. The package leverages a potential outcomes framework to output randomization-based p-values and null intervals for test statistics geared toward any estimands of interest, according to the specified null and alternative hypotheses. Users can define custom randomization schemes so that the randomization distributions are accurate for their experimental settings. The package also creates visualizations of randomization distributions and can test multiple test statistics simultaneously.
Converts data to STL (stereolithography) files that can be used to feed a 3-dimensional printer. The 3-dimensional output from a function can be materialized into a solid surface in a plastic material, therefore allowing more detailed examination. There are many possible uses for this new tool, such as to examine mathematical expressions with very irregular shapes, to aid teaching people with impaired vision, to create raised relief maps from digital elevation maps (DEMs), to bridge the gap between mathematical tools and rapid prototyping, and many more. Ian Walker created the function r2stl() and Jose Gama assembled the package.
This package provides methods for model building and model evaluation of mixed effects models using Monolix <https://monolix.lixoft.com>. Monolix is a software tool for nonlinear mixed effects modeling that must have been installed in order to use Rsmlx'. Among other tasks, Rsmlx provides a powerful tool for automatic PK model building, performs statistical tests for model assessment, bootstrap simulation and likelihood profiling for computing confidence intervals. Rsmlx also proposes several automatic covariate search methods for mixed effects models.
This package provides functionality to read files containing observations which consist of arbitrary key/value pairs.
We provide a toolbox to fit univariate and multivariate linear mixed models via data transforming augmentation. Users can also fit these models via typical data augmentation for a comparison. It returns either maximum likelihood estimates of unknown model parameters (hyper-parameters) via an EM algorithm or posterior samples of those parameters via MCMC. Also see Tak et al. (2019) <doi:10.1080/10618600.2019.1704295>.
Compute spatially explicit land-use metrics for stream survey sites in GRASS GIS and R as an open-source implementation of IDW-PLUS (Inverse Distance Weighted Percent Land Use for Streams). The package includes functions for preprocessing digital elevation and streams data, and one function to compute all the spatially explicit land use metrics described in Peterson et al. (2011) <doi:10.1111/j.1365-2427.2010.02507.x> and previously implemented by Peterson and Pearse (2017) <doi:10.1111/1752-1688.12558> in ArcGIS-Python as IDW-PLUS.
Reversion mutations are secondary mutations that reverse the deleterious effects of an original pathogenic mutation, partially or fully restoring the gene's function. The revert package detects reversion mutations for a specific pathogenic mutation from DNA-seq bam files.
This package provides functions to convert an R colour specification to a colour name. The user can select and create different lists of colour names and different colour metrics for the conversion.
Analyzes and predicts from matrix population models (Caswell 2006) <doi:10.1002/9781118445112.stat07481>.
Implementation of a variety of methods to compute the robustness of ecological interaction networks with binary interactions as described in <doi:10.1002/env.2709>. In particular, using the Stochastic Block Model and its bipartite counterpart, the Latent Block Model to put a parametric model on the network, allows the comparison of the robustness of networks differing in species richness and number of interactions. It also deals with networks that are partially sampled and/or with missing values.