Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functionality that assists in tabular description and statistical comparison of data.
This package provides a facility to generate efficient designs for order-of-additions experiments under pair-wise-order model, see Dennis K. J. Lin and Jiayu Peng (2019)."Order-of-addition experiments: A review and some new thoughts". Quality Engineering, 31:1, 49-59, <doi:10.1080/08982112.2018.1548021>. It also provides a facility to generate component orthogonal arrays under component position model, see Jian-Feng Yang, Fasheng Sun & Hongquan Xu (2020): "A Component Position Model, Analysis and Design for Order-of-Addition Experiments". Technometrics, <doi:10.1080/00401706.2020.1764394>.
Calculates the T-Statistic for the drift burst hypothesis from the working paper Christensen, Oomen and Reno (2018) <DOI:10.2139/ssrn.2842535>. The authors MATLAB code is available upon request, see: <https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2842535>.
Infer progression of circadian rhythms in transcriptome data in which samples are not labeled with time of day and coverage of the circadian cycle may be incomplete. See Shilts et al. (2018) <doi:10.7717/peerj.4327>.
This package provides documentation in form of a common vignette to packages distr', distrEx', distrMod', distrSim', distrTEst', distrTeach', and distrEllipse'.
This package provides a wrapper on top of the Domino Data Python SDK library. It lets you query and access Domino Data Sources directly from your R environment. Under the hood, Domino Data R SDK leverages the API provided by the Domino Data Python SDK', which must be installed as a prerequisite. Domino is a platform that makes it easy to run your code on scalable hardware, with integrated version control and collaboration features designed for analytical workflows. See <https://docs.dominodatalab.com/en/latest/api_guide/140b48/domino-data-api> for more information.
This package provides new types of omnibus tests which are generally much more powerful than traditional tests (including the Kolmogorov-Smirnov, Cramer-von Mises and Anderson-Darling tests),see Zhang (2002) <doi:10.1111/1467-9868.00337>.
Compute degree days from daily min and max temperatures for modeling plant and insect development.
First using dada2 R tools to analyse metabarcode data, the DBTC package then uses the BLAST algorithm to search unknown sequences against local databases, and then takes reduced matched results and provides best taxonomic assignments.
Discriminant Adaptive Nearest Neighbor Classification is a variation of k nearest neighbors where the shape of the neighborhood is data driven. This package implements dann and sub_dann from Hastie (1996) <https://web.stanford.edu/~hastie/Papers/dann_IEEE.pdf>.
This package provides functions to calculate Divisia monetary aggregates index as given in Barnett, W. A. (1980) (<DOI:10.1016/0304-4076(80)90070-6>).
This package performs differential network analysis to infer disease specific gene networks.
Ecological Metadata Language or EML is a long-established format for describing ecological datasets to facilitate sharing and re-use. Because EML is effectively a modified xml schema, however, it is challenging to write and manipulate for non-expert users. delma supports users to write metadata statements in R Markdown or Quarto markdown format, and parse them to EML and (optionally) back again.
Providing six different algorithms that can be used to split the available data into training, test and validation subsets with similar distribution for hydrological model developments. The dataSplit() function will help you divide the data according to specific requirements, and you can refer to the par.default() function to set the parameters for data splitting. The getAUC() function will help you measure the similarity of distribution features between the data subsets. For more information about the data splitting algorithms, please refer to: Chen et al. (2022) <doi:10.1016/j.jhydrol.2022.128340>, Zheng et al. (2022) <doi:10.1029/2021WR031818>.
Enables the user to build a citation network/graph from bibliographic data and, based on modularity and heterocitation metrics, assess the degree of awareness/cross-fertilization between two corpora/communities. This toolset is optimized for Scopus data.
Various functions to import, verify, process and plot high-resolution dendrometer data using daily and stem-cycle approaches as described in Deslauriers et al, 2007 <doi:10.1016/j.dendro.2007.05.003>. For more details about the package please see: Van der Maaten et al. 2016 <doi:10.1016/j.dendro.2016.06.001>.
This package provides a single function that supports the installation of all packages belonging to the dartRverse'. The dartRverse is a set of packages that work together to analyse SNP (single nuclear polymorphism) data. All packages aim to have a similar look and feel and are based on the same type of data structure ('genlight'), with additional metadata for loci and individuals (samples). For more information visit the GitHub pages <https://github.com/green-striped-gecko/dartRverse>.
Reaction rate dynamics can be retrieved from metabolite concentration time courses. User has to provide corresponding stoichiometric matrix but not a regulation model (Michaelis-Menten or similar). Instead of solving an ordinary differential equation (ODE) system describing the evolution of concentrations, we use B-splines to catch the concentration and rate dynamics then solve a least square problem on their coefficients with non-negativity (and optionally monotonicity) constraints. Constraints can be also set on initial values of concentration. The package dynafluxr can be used as a library but also as an application with command line interface dynafluxr::cli("-h") or graphical user interface dynafluxr::gui().
Retrieves code comment decorations for C++ languages of the form \\ [[xyz]]', which are used for automated wrapping of C++ functions.
Profiles datasets (collecting statistics and informative summaries about that data) on data frames and ODBC tables: maximum, minimum, mean, standard deviation, nulls, distinct values, data patterns, data/format frequencies.
This package provides functions are provided to fit temporal lag models to dynamic networks. The models are build on top of exponential random graph models (ERGM) framework. There are functions for simulating or forecasting networks for future time points. Abhirup Mallik & Zack W. Almquist (2019) Stable Multiple Time Step Simulation/Prediction From Lagged Dynamic Network Regression Models, Journal of Computational and Graphical Statistics, 28:4, 967-979, <DOI: 10.1080/10618600.2019.1594834>.
Formatting of population and case data, calculation of Standardized Incidence Ratios, and fitting the BYM model using INLA'. For details see Brown (2015) <doi:10.18637/jss.v063.i12>.
Estimates a variety of Dynamic Conditional Correlation (DCC) models. More in detail, the dccmidas package allows the estimation of the corrected DCC (cDCC) of Aielli (2013) <doi:10.1080/07350015.2013.771027>, the DCC-MIDAS of Colacito et al. (2011) <doi:10.1016/j.jeconom.2011.02.013>, the Asymmetric DCC of Cappiello et al. <doi:10.1093/jjfinec/nbl005>, and the Dynamic Equicorrelation (DECO) of Engle and Kelly (2012) <doi:10.1080/07350015.2011.652048>. dccmidas offers the possibility of including standard GARCH <doi:10.1016/0304-4076(86)90063-1>, GARCH-MIDAS <doi:10.1162/REST_a_00300> and Double Asymmetric GARCH-MIDAS <doi:10.1016/j.econmod.2018.07.025> models in the univariate estimation. Moreover, also the scalar and diagonal BEKK <doi:10.1017/S0266466600009063> models can be estimated. Finally, the package calculates also the var-cov matrix under two non-parametric models: the Moving Covariance and the RiskMetrics specifications.
Statistical inference for the regression coefficients in high-dimensional linear models with hidden confounders. The Doubly Debiased Lasso method was proposed in <arXiv:2004.03758>.