Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Parameter inference methods for models defined implicitly using a random simulator. Inference is carried out using simulation-based estimates of the log-likelihood of the data. The inference methods implemented in this package are explained in Park, J. (2025) <doi:10.48550/arxiv.2311.09446>. These methods are built on a simulation metamodel which assumes that the estimates of the log-likelihood are approximately normally distributed with the mean function that is locally quadratic around its maximum. Parameter estimation and uncertainty quantification can be carried out using the ht() function (for hypothesis testing) and the ci() function (for constructing a confidence interval for one-dimensional parameters).
Estimate morphometric and gonadal size at sexual maturity for organisms, usually fish and invertebrates. It includes methods for classification based on relative growth (using principal components analysis, hierarchical clustering, discriminant analysis), logistic regression (Frequentist or Bayes), parameters estimation and some basic plots.
The SALSO algorithm is an efficient randomized greedy search method to find a point estimate for a random partition based on a loss function and posterior Monte Carlo samples. The algorithm is implemented for many loss functions, including the Binder loss and a generalization of the variation of information loss, both of which allow for unequal weights on the two types of clustering mistakes. Efficient implementations are also provided for Monte Carlo estimation of the posterior expected loss of a given clustering estimate. See Dahl, Johnson, Müller (2022) <doi:10.1080/10618600.2022.2069779>.
This package provides a single, phenome-wide permutation of large-scale biobank data. When a large number of phenotypes are analyzed in parallel, a single permutation across all phenotypes followed by genetic association analyses of the permuted data enables estimation of false discovery rates (FDRs) across the phenome. These FDR estimates provide a significance criterion for interpreting genetic associations in a biobank context. For the basic permutation of unrelated samples, this package takes a sample-by-variable file with ID, genotypic covariates, phenotypic covariates, and phenotypes as input. For data with related samples, it also takes a file with sample pair-wise identity-by-descent information. The function outputs a permuted sample-by-variable file ready for genome-wide association analysis. See Annis et al. (2021) <doi:10.21203/rs.3.rs-873449/v1> for details.
Estimate the receiver operating characteristic (ROC) curve, area under the curve (AUC) and optimal cut-off points for individual classification taking into account complex sampling designs when working with complex survey data. Methods implemented in this package are described in: A. Iparragirre, I. Barrio, I. Arostegui (2024) <doi:10.1002/sta4.635>; A. Iparragirre, I. Barrio, J. Aramendi, I. Arostegui (2022) <doi:10.2436/20.8080.02.121>; A. Iparragirre, I. Barrio (2024) <doi:10.1007/978-3-031-65723-8_7>.
Fitting and plotting parametric or non-parametric size-biased non-negative distributions, with optional covariates if parametric. Rowcliffe, M. et al. (2016) <doi:10.1002/rse2.17>.
Converts the floor speeches of Uruguayan legislators, extracted from the parliamentary minutes, to tidy data.frame where each observation is the intervention of a single legislator.
Animal movement models including Moving-Resting Process with Embedded Brownian Motion (Yan et al., 2014, <doi:10.1007/s10144-013-0428-8>; Pozdnyakov et al., 2017, <doi:10.1007/s11009-017-9547-6>), Brownian Motion with Measurement Error (Pozdnyakov et al., 2014, <doi:10.1890/13-0532.1>), Moving-Resting-Handling Process with Embedded Brownian Motion (Pozdnyakov et al., 2020, <doi:10.1007/s11009-020-09774-1>), Moving-Resting Process with Measurement Error (Hu et al., 2021, <doi:10.1111/2041-210X.13694>), Moving-Moving Process with two Embedded Brownian Motions.
Tree-structured modelling of categorical predictors (Tutz and Berger (2018), <doi:10.1007/s11634-017-0298-6>) or measurement units (Berger and Tutz (2018), <doi:10.1080/10618600.2017.1371030>).
Calculates graph theoretic scagnostics. Scagnostics describe various measures of interest for pairs of variables, based on their appearance on a scatterplot. They are useful tool for discovering interesting or unusual scatterplots from a scatterplot matrix, without having to look at every individual plot.
Computes the optimal alignment of two character sequences. Visualizes the result of the alignment in a matrix plot. Needleman, Saul B.; Wunsch, Christian D. (1970) "A general method applicable to the search for similarities in the amino acid sequence of two proteins" <doi:10.1016/0022-2836(70)90057-4>.
This package provides a simple, configurable, provider-agnostic OAuth 2.0 and OpenID Connect (OIDC) authentication framework for shiny applications using S7 classes. Defines providers, clients, and tokens, as well as various supporting functions and a shiny module. Features include cross-site request forgery (CSRF) protection, state encryption, Proof Key for Code Exchange (PKCE) handling, validation of OIDC identity tokens (nonces, signatures, claims), automatic user info retrieval, asynchronous flows, and hooks for audit logging.
Fits Bayesian hierarchical spatial and spatial-temporal process models for point-referenced Gaussian, Poisson, binomial, and binary data using stacking of predictive densities. It involves sampling from analytically available posterior distributions conditional upon candidate values of the spatial process parameters and, subsequently assimilate inference from these individual posterior distributions using Bayesian predictive stacking. Our algorithm is highly parallelizable and hence, much faster than traditional Markov chain Monte Carlo algorithms while delivering competitive predictive performance. See Zhang, Tang, and Banerjee (2025) <doi:10.1080/01621459.2025.2566449>, and, Pan, Zhang, Bradley, and Banerjee (2025) <doi:10.48550/arXiv.2406.04655> for details.
The function generates and plots random snowflakes. Each snowflake is defined by a given diameter, width of the crystal, color, and random seed. Snowflakes are plotted in such way that they always remain round, no matter what the aspect ratio of the plot is. Snowflakes can be created using transparent colors, which creates a more interesting, somewhat realistic, image. Images of the snowflakes can be separately saved as svg files and used in websites as static or animated images.
Makes the React library Chakra UI usable in Shiny apps. Chakra UI components include alert dialogs, drawers (sliding panels), menus, modals, popovers, sliders, and more.
Infrastructure and functions that can be used for integrating Stan (Carpenter et al. (2017) <doi:10.18637/jss.v076.i01>) code into stand alone R packages which in turn use the CmdStan engine which is often accessed through CmdStanR'. Details given in Stan Development Team (2025) <https://mc-stan.org/cmdstanr/>. Using CmdStanR and pre-written Stan code can make package installation easy. Using staninside offers a way to cache user-compiled Stan models in user-specified directories reducing the need to recompile the same model multiple times.
This package contains methods for simulation and for evaluating the pdf, cdf, and quantile functions for symmetric stable, symmetric classical tempered stable, and symmetric power tempered stable distributions.
Survival analysis for unbalanced clusters using Archimedean copulas (Prenen et al. (2016) <DOI:10.1111/rssb.12174>).
Estimates the parameter of small area in binary data without auxiliary variable using Empirical Bayes technique, mainly from Rao and Molina (2015,ISBN:9781118735787) with book entitled "Small Area Estimation Second Edition". This package provides another option of direct estimation using weight. This package also features alpha and beta parameter estimation on calculating process of small area. Those methods are Newton-Raphson and Moment which based on Wilcox (1979) <doi:10.1177/001316447903900302> and Kleinman (1973) <doi:10.1080/01621459.1973.10481332>.
This package creates a data specification that describes the columns of a table (data.frame). Provides methods to read, write, and update the specification. Checks whether a table matches its specification. See specification.data.frame(),read.spec(), write.spec(), as.csv.spec(), respecify.character(), and %matches%.data.frame().
This package provides a set of segregation-based indices and randomization methods to make robust environmental inequality assessments, as described in Schaeffer and Tivadar (2019) "Measuring Environmental Inequalities: Insights from the Residential Segregation Literature" <doi:10.1016/j.ecolecon.2019.05.009>.
This package provides a function that behaves nearly as base::source() but implements a caching mechanism on disk, project based. It allows to quasi source() R scripts that gather data but can fail or consume to much time to respond even if nothing new is expected. It comes with tools to check and execute on demand or when cache is invalid the script.
Manages and display stellar tracks and isochrones from Pisa low-mass database. Includes tools for isochrones construction and tracks interpolation.
Computes the Exposure-At-Default based on the standardized approach of CRR2 (SA-CCR). The simplified version of SA-CCR has been included, as well as the OEM methodology. Multiple trade types of all the five major asset classes are being supported including the Other Exposure and, given the inheritance- based structure of the application, the addition of further trade types is straightforward. The application returns a list of trees per Counterparty and CSA after automatically separating the trades based on the Counterparty, the CSAs, the hedging sets, the netting sets and the risk factors. The basis and volatility transactions are also identified and treated in specific hedging sets whereby the corresponding penalty factors are applied. All the examples appearing on the regulatory papers (both for the margined and the unmargined workflow) have been implemented including the latest CRR2 developments.