Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions implementing multivariate state space models for purposes of time series analysis and forecasting. The focus of the package is on multivariate models, such as Vector Exponential Smoothing, Vector ETS (Error-Trend-Seasonal model) etc. It currently includes Vector Exponential Smoothing (VES, de Silva et al., 2010, <doi:10.1177/1471082X0901000401>), Vector ETS (Svetunkov et al., 2023, <doi:10.1016/j.ejor.2022.04.040>) and simulation function for VES.
This package provides a suite of functions for reading in a rate file in XML format, stratify a cohort, and calculate SMRs from the stratified cohort and rate file.
Extracts and creates an analysis pipeline for the JSON data files from Brain Sense sessions using Medtronic's Deep Brain Stimulation surgery electrode implants.
Miscellaneous scripts, e.g. functionality to make and plot factor diagrams for the statistical design.
This package provides a collection of various R functions for the purpose of Luminescence dating data analysis. This includes, amongst others, data import, export, application of age models, curve deconvolution, sequence analysis and plotting of equivalent dose distributions.
The goal of this package is to cover the most common steps in Loss Given Default (LGD) rating model development. The main procedures available are those that refer to bivariate and multivariate analysis. In particular two statistical methods for multivariate analysis are currently implemented รข OLS regression and fractional logistic regression. Both methods are also available within different blockwise model designs and both have customized stepwise algorithms. Descriptions of these customized designs are available in Siddiqi (2016) <doi:10.1002/9781119282396.ch10> and Anderson, R.A. (2021) <doi:10.1093/oso/9780192844194.001.0001>. Although they are explained for PD model, the same designs are applicable for LGD model with different underlying regression methods (OLS and fractional logistic regression). To cover other important steps for LGD model development, it is recommended to use LGDtoolkit package along with PDtoolkit', and monobin (or monobinShiny') packages. Additionally, LGDtoolkit provides set of procedures handy for initial and periodical model validation.
Change-point detection algorithm with label constraints and a penalty for each change outside of labels. Read TD Hocking, A Srivastava (2023) <doi:10.1007/s00180-022-01238-z> for details.
This package performs recursive partitioning of linear and nonlinear mixed effects models, specifically for longitudinal data. The package is an extension of the original longRPart package by Stewart and Abdolell (2013) <https://cran.r-project.org/package=longRPart>.
Aids in learning statistical functions incorporating the result of calculus done with each function and how they are obtained, that is, which equation and variables are used. Also for all these equations and their related variables detailed explanations and interactive exercises are also included. All these characteristics allow to the package user to improve the learning of statistics basics by means of their use.
We developed an approach to detect differential expression features in long non-coding RNA low counts, using generalized linear model with zero-inflated exponential quasi likelihood ratio test. Methods implemented in this package are described in Li (2019) <doi:10.1186/s12864-019-5926-4>.
This package provides functions for performing and visualizing Local Fisher Discriminant Analysis(LFDA), Kernel Fisher Discriminant Analysis(KLFDA), and Semi-supervised Local Fisher Discriminant Analysis(SELF).
Estimate model parameters to determine whether two compounds have synergy, antagonism, or Loewe's Additivity.
Given independent and identically distributed observations X(1), ..., X(n), compute the maximum likelihood estimator (MLE) of a density as well as a smoothed version of it under the assumption that the density is log-concave, see Rufibach (2007) and Duembgen and Rufibach (2009). The main function of the package is logConDens that allows computation of the log-concave MLE and its smoothed version. In addition, we provide functions to compute (1) the value of the density and distribution function estimates (MLE and smoothed) at a given point (2) the characterizing functions of the estimator, (3) to sample from the estimated distribution, (5) to compute a two-sample permutation test based on log-concave densities, (6) the ROC curve based on log-concave estimates within cases and controls, including confidence intervals for given values of false positive fractions (7) computation of a confidence interval for the value of the true density at a fixed point. Finally, three datasets that have been used to illustrate log-concave density estimation are made available.
Data, scripts and code from chunks used as examples in the book "Learn R: As a Language" 1ed and 2ed by Pedro J. Aphalo. ISBN 9780367182533 (pbk 1ed); ISBN 9780367182557 (hbk 1ed); ISBN 9780429060342 (ebk 1ed).
The log4r package is meant to provide a fast, lightweight, object-oriented approach to logging in R based on the widely-emulated log4j system and etymology.
Location and scale hypothesis testing using the LePage test and variants of its as proposed by Hussain A. and Tsagris M. (2025), <doi:10.48550/arXiv.2509.19126>.
This package provides functions for the implementation of a density goodness-of-fit test, based on piecewise approximation of the L2 distance.
Identification of equilibrium locations in location games (Hotelling (1929) <doi:10.2307/2224214>). In these games, two competing actors place customer-serving units in two locations simultaneously. Customers make the decision to visit the location that is closest to them. The functions in this package include Prim algorithm (Prim (1957) <doi:10.1002/j.1538-7305.1957.tb01515.x>) to find the minimum spanning tree connecting all network vertices, an implementation of Dijkstra algorithm (Dijkstra (1959) <doi:10.1007/BF01386390>) to find the shortest distance and path between any two vertices, a self-developed algorithm using elimination of purely dominated strategies to find the equilibrium, and several plotting functions.
Maximum likelihood estimation of log-binomial regression with special functionality when the MLE is on the boundary of the parameter space.
Estimation of a lognormal - Generalized Pareto mixture via the Expectation-Maximization algorithm. Computation of bootstrap standard errors is supported and performed via parallel computing. Functions for random number simulation and density evaluation are also available. For more details see Bee and Santi (2025) <doi:10.48550/arXiv.2505.22507>.
The Programme for International Student Assessment (PISA) is a global study conducted by the Organization for Economic Cooperation and Development (OECD) in member and non-member countries to assess educational systems by assessing 15-year-old school students academic performance in mathematics, science, and reading. This datasets contains information on their scores and other socioeconomic characteristics, information about their school and its infrastructure, as well as the countries that are taking part in the program.
This package provides tools for sensitivity analysis of LSD simulation models. Reads object-oriented data produced by LSD simulation models and performs screening and global sensitivity analysis (Sobol decomposition method, Saltelli et al. (2008) ISBN:9780470725177). A Kriging or polynomial meta-model (Kleijnen (2009) <doi:10.1016/j.ejor.2007.10.013>) is estimated using the simulation data to provide the data required by the Sobol decomposition. LSD (Laboratory for Simulation Development) is free software developed by Marco Valente and Marcelo C. Pereira (documentation and downloads available at <https://www.labsimdev.org/>).
This package provides a utility to facilitate the logging and review of R programs in clinical trial programming workflows.
This package provides a set of streamlined functions that allow easy generation of linear regression diagnostic plots necessarily for checking linear model assumptions. This package is meant for easy scheming of linear regression diagnostics, while preserving merits of "The Grammar of Graphics" as implemented in ggplot2'. See the ggplot2 website for more information regarding the specific capability of graphics.