Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Several statistical test functions as well as a function for exploratory data analysis to investigate classifiers allocating individuals to one of three disjoint and ordered classes. In a single classifier assessment the discriminatory power is compared to classification by chance. In a comparison of two classifiers the null hypothesis corresponds to equal discriminatory power of the two classifiers. See also "ROC Analysis for Classification and Prediction in Practice" by Nakas, Bantis and Gatsonis (2023), ISBN 9781482233704.
Identification and estimation of the autoregressive threshold models with Gaussian noise, as well as positive-valued time series. The package provides the identification of the number of regimes, the thresholds and the autoregressive orders, as well as the estimation of remain parameters. The package implements the methodology from the 2005 paper: Modeling Bivariate Threshold Autoregressive Processes in the Presence of Missing Data <DOI:10.1081/STA-200054435>.
Handling taxonomic lists through objects of class taxlist'. This package provides functions to import species lists from Turboveg (<https://www.synbiosys.alterra.nl/turboveg/>) and the possibility to create backups from resulting R-objects. Also quick displays are implemented as summary-methods.
Approaches for incorporating time into network analysis. Methods include: construction of time-ordered networks (temporal graphs); shortest-time and shortest-path-length analyses; resource spread calculations; data resampling and rarefaction for null model construction; reduction to time-aggregated networks with variable window sizes; application of common descriptive statistics to these networks; vector clock latencies; and plotting functionalities. The package supports <doi:10.1371/journal.pone.0020298>.
Allow to compute and visualise convective parameters commonly used in the operational prediction of severe convective storms. Core algorithm is based on a highly optimized C++ code linked into R via Rcpp'. Highly efficient engine allows to derive thermodynamic and kinematic parameters from large numerical datasets such as reanalyses or operational Numerical Weather Prediction models in a reasonable amount of time. Package has been developed since 2017 by research meteorologists specializing in severe thunderstorms. The most relevant methods used in the package based on the following publications Stipanuk (1973) <https://apps.dtic.mil/sti/pdfs/AD0769739.pdf>, McCann et al. (1994) <doi:10.1175/1520-0434(1994)009%3C0532:WNIFFM%3E2.0.CO;2>, Bunkers et al. (2000) <doi:10.1175/1520-0434(2000)015%3C0061:PSMUAN%3E2.0.CO;2>, Corfidi et al. (2003) <doi:10.1175/1520-0434(2003)018%3C0997:CPAMPF%3E2.0.CO;2>, Showalter (1953) <doi:10.1175/1520-0477-34.6.250>, Coffer et al. (2019) <doi:10.1175/WAF-D-19-0115.1>, Gropp and Davenport (2019) <doi:10.1175/WAF-D-17-0150.1>, Czernecki et al. (2019) <doi:10.1016/j.atmosres.2019.05.010>, Taszarek et al. (2020) <doi:10.1175/JCLI-D-20-0346.1>, Sherburn and Parker (2014) <doi:10.1175/WAF-D-13-00041.1>, Romanic et al. (2022) <doi:10.1016/j.wace.2022.100474>.
Agglomerative hierarchical clustering with a bespoke distance measure based on medication similarities in the Anatomical Therapeutic Chemical Classification System, medication timing and medication amount or dosage. Tools for summarizing, illustrating and manipulating the cluster objects are also available.
This package provides a set of functions that allow users for styling their R code according to the tidyverse style guide. The package uses a native Rust implementation to ensure the highest performance. Learn more about tergo at <https://rtergo.pagacz.io>.
Create publication quality plots and tables for Item Response Theory and Classical Test theory based item analysis, exploratory and confirmatory factor analysis.
Fitting time-varying coefficient models for single and multi-equation regressions, using kernel smoothing techniques.
The tcplfit2 R package performs basic concentration-response curve fitting. The original tcplFit() function in the tcpl R package performed basic concentration-response curvefitting to 3 models. With tcplfit2, the core tcpl concentration-response functionality has been expanded to process diverse high-throughput screen (HTS) data generated at the US Environmental Protection Agency, including targeted ToxCast, high-throughput transcriptomics (HTTr) and high-throughput phenotypic profiling (HTPP). tcplfit2 can be used independently to support analysis for diverse chemical screening efforts.
Uses the Distorted Wave Born Approximation (DWBA) to compute the acoustic backward scattering, the geometry of the object is formed by a volumetric mesh, composed of tetrahedrons. This computation is done efficiently through an analytical 3D integration that allows for a solution which is expressed in terms of elementary functions for each tetrahedron. It is important to note that this method is only valid for objects whose acoustic properties, such as density and sound speed, do not vary significantly compared to the surrounding medium. (See Lavia, Cascallares and Gonzalez, J. D. (2023). TetraScatt model: Born approximation for the estimation of acoustic dispersion of fluid-like objects of arbitrary geometries. arXiv preprint <arXiv:2312.16721>).
Multiscale multifractal analysis (MMA) (GieraĆ
towski et al., 2012)<DOI:10.1103/PhysRevE.85.021915> is a time series analysis method, designed to describe scaling properties of fluctuations within the signal analyzed. The main result of this procedure is the so called Hurst surface h(q,s) , which is a dependence of the local Hurst exponent h (fluctuation scaling exponent) on the multifractal parameter q and the scale of observation s (data window width).
This package provides a suite of descriptive and inferential methods designed to evaluate one or more biomarkers for their ability to guide patient treatment recommendations. Package includes functions to assess the calibration of risk models; and plot, evaluate, and compare markers. Please see the reference Janes H, Brown MD, Huang Y, et al. (2014) <doi:10.1515/ijb-2012-0052> for further details.
Link R with Transformers from Hugging Face to transform text variables to word embeddings; where the word embeddings are used to statistically test the mean difference between set of texts, compute semantic similarity scores between texts, predict numerical variables, and visual statistically significant words according to various dimensions etc. For more information see <https://www.r-text.org>.
This package provides a simple type annotation for R that is usable in scripts, in the R console and in packages. It is intended as a convention to allow other packages to use the type information to provide error checking, automatic documentation or optimizations.
Displays processing time in a clear and structured way. One function supports iterative workflows by predicting and showing the total time required, while another reports the time taken for individual steps within a process.
Efficient tabulation with Stata-like output. For each unique value of the variable, it shows the number of observations with that value, proportion of observations with that value, and cumulative proportion, in descending order of frequency. Accepts data.table, tibble, or data.frame as input. Efficient with big data: if you give it a data.table, tab() uses data.table syntax.
Graphic interface for text analysis, implement a few methods such as biplots, correspondence analysis, co-occurrence, clustering, topic models, correlations and sentiments.
The goal of this package will be to provide a simple interface for automatic machine learning that fits the tidymodels framework. The intention is to work for regression and classification problems with a simple verb framework.
This package provides a tm Source to create corpora from articles exported from the LexisNexis content provider as HTML files. It is able to read both text content and meta-data information (including source, date, title, author and pages). Note that the file format is highly unstable: there is no warranty that this package will work for your corpus, and you may have to adjust the code to adapt it to your particular format.
This package provides multiple water chemistry-based models and published empirical models in one standard format. As many models have been included as possible, however, users should be aware that models have varying degrees of accuracy and applicability. To learn more, read the references provided below for the models implemented. Functions can be chained together to model a complete treatment process and are designed to work in a tidyverse workflow. Models are primarily based on these sources: Benjamin, M. M. (2002, ISBN:147862308X), Crittenden, J. C., Trussell, R., Hand, D., Howe, J. K., & Tchobanoglous, G., Borchardt, J. H. (2012, ISBN:9781118131473), USEPA. (2001) <https://www.epa.gov/sites/default/files/2017-03/documents/wtp_model_v._2.0_manual_508.pdf>.
The 1311 time series from the tourism forecasting competition conducted in 2010 and described in Athanasopoulos et al. (2011) <DOI:10.1016/j.ijforecast.2010.04.009>.
In Cox's proportional hazard model, covariates are modeled as linear function and may not be flexible. This package implements additive trend filtering Cox proportional hazards model as proposed in Jiacheng Wu & Daniela Witten (2019) "Flexible and Interpretable Models for Survival Data", Journal of Computational and Graphical Statistics, <DOI:10.1080/10618600.2019.1592758>. The fitted functions are piecewise polynomial with adaptively chosen knots.
Treatment and visualization of membrane (selective) transport data. Transport profiles involving up to three species are produced as publication-ready plots and several membrane performance parameters (e.g. separation factors as defined in Koros et al. (1996) <doi:10.1351/pac199668071479> and non-linear regression parameters for the equations described in Rodriguez de San Miguel et al. (2014) <doi:10.1016/j.jhazmat.2014.03.052>) can be obtained. Many widely used experimental setups (e.g. membrane physical aging) can be easily studied through the package's graphical representations.