Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to parse glycan structure text representations into glyrepr glycan structures. Currently, it supports StrucGP-style, pGlyco-style, IUPAC-condensed, IUPAC-extended, IUPAC-short, WURCS, Linear Code, and GlycoCT format. It also provides an automatic parser to detect the format and parse the structure string.
After being given the location of your students submissions and a test file, the function runs each .R file, and evaluates the results from all the given tests. Results are neatly returned in a data frame that has a row for each student, and a column for each test.
This package provides a statistical disclosure control tool to protect tables by suppression using the Gaussian elimination secondary suppression algorithm (Langsrud, 2024) <doi:10.1007/978-3-031-69651-0_6>. A suggestion is to start by working with functions SuppressSmallCounts() and SuppressDominantCells(). These functions use primary suppression functions for the minimum frequency rule and the dominance rule, respectively. Novel functionality for suppression of disclosive cells is also included. General primary suppression functions can be supplied as input to the general working horse function, GaussSuppressionFromData(). Suppressed frequencies can be replaced by synthetic decimal numbers as described in Langsrud (2019) <doi:10.1007/s11222-018-9848-9>.
This package performs genetic algorithm (Scrucca, L (2013) <doi:10.18637/jss.v053.i04>) assisted genomic best liner unbiased prediction for genomic selection. It also provides a binning method in natural population for genomic selection under the principle of linkage disequilibrium for dimensional reduction.
This package provides a new take on the bar chart. Similar to a waffle style chart but instead of squares the layout resembles a brick wall.
This package contains an engine for spatially-explicit eco-evolutionary mechanistic models with a modular implementation and several support functions. It allows exploring the consequences of ecological and macroevolutionary processes across realistic or theoretical spatio-temporal landscapes on biodiversity patterns as a general term. Reference: Oskar Hagen, Benjamin Flueck, Fabian Fopp, Juliano S. Cabral, Florian Hartig, Mikael Pontarp, Thiago F. Rangel, Loic Pellissier (2021) "gen3sis: A general engine for eco-evolutionary simulations of the processes that shape Earth's biodiversity" <doi:10.1371/journal.pbio.3001340>.
Data-driven approach for arriving at person-specific time series models from within a Graphical Vector Autoregression (VAR) framework. The method first identifies which relations replicate across the majority of individuals to detect signal from noise. These group-level relations are then used as a foundation for starting the search for person-specific (or individual-level) relations. All estimates are obtained uniquely for each individual in the final models. The method for the graphicalVAR approach is found in Epskamp, Waldorp, Mottus & Borsboom (2018) <doi:10.1080/00273171.2018.1454823>.
The American Community Survey (ACS) <https://www.census.gov/programs-surveys/acs> offers geodatabases with geographic information and associated data of interest to researchers in the area. The goal of this package is to generate objects that allow us to access and consult the information available in various formats, such as in GeoPackage format or in multidimensional ROLAP (Relational On-Line Analytical Processing) star format.
This package provides an extension to ggplot2 (Wickham, 2016, <doi:10.1007/978-3-319-24277-4>) for creating two types of continuous confidence interval plots (Violin CI and Gradient CI plots), typically for the sample mean. These plots contain multiple user-defined confidence areas with varying colours, defined by the underlying t-distribution used to compute standard confidence intervals for the mean of the normal distribution when the variance is unknown. Two types of plots are available, a gradient plot with rectangular areas, and a violin plot where the shape (horizontal width) is defined by the probability density function of the t-distribution. These visualizations are studied in (Helske, Helske, Cooper, Ynnerman, and Besancon, 2021) <doi:10.1109/TVCG.2021.3073466>.
This package provides a variable selection approach for generalized linear mixed models by L1-penalized estimation is provided, see Groll and Tutz (2014) <doi:10.1007/s11222-012-9359-z>. See also Groll and Tutz (2017) <doi:10.1007/s10985-016-9359-y> for discrete survival models including heterogeneity.
Create plots that combine a phylogeny and frequency dynamics. Phylogenetic input can be a generic adjacency matrix or a tree of class "phylo". Inspired by similar plots in publications of the labs of RE Lenski and JE Barrick. Named for HJ Muller (who popularised such plots) and H Wickham (whose code this package exploits).
The GenSVM classifier is a generalized multiclass support vector machine (SVM). This classifier aims to find decision boundaries that separate the classes with as wide a margin as possible. In GenSVM, the loss function is very flexible in the way that misclassifications are penalized. This allows the user to tune the classifier to the dataset at hand and potentially obtain higher classification accuracy than alternative multiclass SVMs. Moreover, this flexibility means that GenSVM has a number of other multiclass SVMs as special cases. One of the other advantages of GenSVM is that it is trained in the primal space, allowing the use of warm starts during optimization. This means that for common tasks such as cross validation or repeated model fitting, GenSVM can be trained very quickly. Based on: G.J.J. van den Burg and P.J.F. Groenen (2018) <https://www.jmlr.org/papers/v17/14-526.html>.
This package provides functions for multiple knockoff inference using summary statistics, e.g. Z-scores. The knockoff inference is a general procedure for controlling the false discovery rate (FDR) when performing variable selection. This package provides a procedure which performs knockoff inference without ever constructing individual knockoffs (GhostKnockoff). It additionally supports multiple knockoff inference for improved stability and reproducibility. Moreover, it supports meta-analysis of multiple overlapping studies.
An interface for fitting generalized additive models (GAMs) and generalized additive mixed models (GAMMs) using the lme4 package as the computational engine, as described in Helwig (2024) <doi:10.3390/stats7010003>. Supports default and formula methods for model specification, additive and tensor product splines for capturing nonlinear effects, and automatic determination of spline type based on the class of each predictor. Includes an S3 plot method for visualizing the (nonlinear) model terms, an S3 predict method for forming predictions from a fit model, and an S3 summary method for conducting significance testing using the Bayesian interpretation of a smoothing spline.
Estimates the Gini index and computes variances and confidence intervals for finite and infinite populations, using different methods; also computes Gini index for continuous probability distributions, draws samples from continuous probability distributions with Gini indices set by the user; uses Rcpp'. References: Muñoz et al. (2023) <doi:10.1177/00491241231176847>. à lvarez et al. (2021) <doi:10.3390/math9243252>. Giorgi and Gigliarano (2017) <doi:10.1111/joes.12185>. Langel and Tillé (2013) <doi:10.1111/j.1467-985X.2012.01048.x>.
This package provides a Bayesian model selection approach for generalized linear mixed models. Currently, GLMMselect can be used for Poisson GLMM and Bernoulli GLMM. GLMMselect can select fixed effects and random effects simultaneously. Covariance structures for the random effects are a product of a unknown scalar and a known semi-positive definite matrix. GLMMselect can be widely used in areas such as longitudinal studies, genome-wide association studies, and spatial statistics. GLMMselect is based on Xu, Ferreira, Porter, and Franck (202X), Bayesian Model Selection Method for Generalized Linear Mixed Models, Biometrics, under review.
This package provides a toolkit with functions to fit, plot, summarize, and apply Generalized Dissimilarity Models. Mokany K, Ware C, Woolley SNC, Ferrier S, Fitzpatrick MC (2022) <doi:10.1111/geb.13459> Ferrier S, Manion G, Elith J, Richardson K (2007) <doi:10.1111/j.1472-4642.2007.00341.x>.
Two-Step Lasso (TS-Lasso) and compound minimum methods to recover the abundance of missing peaks in mass spectrum analysis. TS-Lasso is an imputation method that handles various types of missing peaks simultaneously. This package provides the procedure to generate missing peaks (or data) for simulation study, as well as a tool to estimate and visualize the proportion of missing at random.
Robust multiple or multivariate linear regression, nonparametric regression on orthogonal components, classical or robust partial least squares models as described in Bilodeau, Lafaye De Micheaux and Mahdi (2015) <doi:10.18637/jss.v065.i01>.
An implementation of Gini-based weighting approaches in constructing composite indicators, providing functionalities for normalization, aggregation, and ranking comparison.
Computes the sample probability value (p-value) for the estimated coefficient from a standard genome-wide univariate regression. It computes the exact finite-sample p-value under the assumption that the measured phenotype (the dependent variable in the regression) has a known Bernoulli-normal mixture distribution. Finite-sample genome-wide regression p-values (Gwrpv) with a non-normally distributed phenotype (Gregory Connor and Michael O'Neill, bioRxiv 204727 <doi:10.1101/204727>).
Create Primavera-style interactive Gantt charts with Work Breakdown Structure (WBS) hierarchy and activities. Features include color-coded WBS items, indented labels, scrollable views for large projects, dynamic date formatting, and the ability to dim past activities. Built on top of plotly for interactive visualizations.
Connects to the Google Trends for Health API hosted at <https://trends.google.com/trends/>, allowing projects authorized to use the health research data to query Google Trends'.
This package implements the five-parameter Generalized Kumaraswamy ('gkw') distribution proposed by Carrasco, Ferrari and Cordeiro (2010) <doi:10.48550/arXiv.1004.0911> and its seven nested sub-families for modeling bounded continuous data on the unit interval (0,1). The gkw distribution extends the Kumaraswamy distribution described by Jones (2009) <doi:10.1016/j.stamet.2008.04.001>. Provides density, distribution, quantile, and random generation functions, along with analytical log-likelihood, gradient, and Hessian functions implemented in C++ via RcppArmadillo for maximum computational efficiency. Suitable for modeling proportions, rates, percentages, and indices exhibiting complex features such as asymmetry, or heavy tails and other shapes not adequately captured by standard distributions like simple Beta or Kumaraswamy.