Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a general framework for constructing variable importance plots from various types of machine learning models in R. Aside from some standard model- specific variable importance measures, this package also provides model- agnostic approaches that can be applied to any supervised learning algorithm. These include 1) an efficient permutation-based variable importance measure, 2) variable importance based on Shapley values (Strumbelj and Kononenko, 2014) <doi:10.1007/s10115-013-0679-x>, and 3) the variance-based approach described in Greenwell et al. (2018) <doi:10.48550/arXiv.1805.04755>. A variance-based method for quantifying the relative strength of interaction effects is also included (see the previous reference for details).
Multi-caller variant analysis pipeline for targeted analysis sequencing (TAS) data. Features a modular, automated workflow that can start with raw reads and produces a user-friendly PDF summary and a spreadsheet containing consensus variant information.
Tool for easy and efficient discretization of continuous and categorical data. The package calculates the most optimal binning of a given explanatory variable with respect to a user-specified target variable. The purpose is to assign a unique Weight-of-Evidence value to each of the calculated binpoints in order to recode the original variable. The package allows users to impose certain restrictions on the functional form on the resulting binning while maximizing the overall information value in the original data. The package is well suited for logistic scoring models where input variables may be subject to restrictions such as linearity by e.g. regulatory authorities. An excellent source describing in detail the development of scorecards, and the role of Weight-of-Evidence coding in credit scoring is (Siddiqi 2006, ISBN: 978â 0-471â 75451â 0). The package utilizes the discrete nature of decision trees and Isotonic Regression to accommodate the trade-off between flexible functional forms and maximum information value.
This package provides a set of wrapper functions for Visa Chart Components'. Visa Chart Components <https://github.com/visa/visa-chart-components> is an accessibility focused, framework agnostic set of data experience design systems components for the web.
This package provides a library for creating time based charts, like Gantt or timelines. Possible outputs include ggplot2 diagrams, plotly.js graphs, Highcharts.js widgets and data.frames. Results can be used in the RStudio viewer pane, in RMarkdown documents or in Shiny apps. In the interactive outputs created by vistime() and hc_vistime(), you can interact with the plot using mouse hover or zoom.
This package provides functions for estimation (parametric, semi-parametric and non-parametric) of copula-based dependence coefficients between a finite collection of random vectors, including phi-dependence measures and Bures-Wasserstein dependence measures. An algorithm for agglomerative hierarchical variable clustering is also implemented. Following the articles De Keyser & Gijbels (2024) <doi:10.1016/j.jmva.2024.105336>, De Keyser & Gijbels (2024) <doi:10.1016/j.ijar.2023.109090>, and De Keyser & Gijbels (2024) <doi:10.48550/arXiv.2404.07141>.
Functionality for creating phase portraits of functions in the complex number plane. Works with R base graphics, whose full functionality is available. Parallel processing is used for optimum performance.
Feature selection using Sequential Forward Floating feature Selection and Jeffries-Matusita distance. It returns a suboptimal set of features to use for image classification. Reference: Dalponte, M., Oerka, H.O., Gobakken, T., Gianelle, D. & Naesset, E. (2013). Tree Species Classification in Boreal Forests With Hyperspectral Data. IEEE Transactions on Geoscience and Remote Sensing, 51, 2632-2645, <DOI:10.1109/TGRS.2012.2216272>.
This package provides methods to transform omop_result objects into formatted tables and figures, facilitating the visualisation of study results working with the Observational Medical Outcomes Partnership (OMOP) Common Data Model.
This package provides a wrapped LASSO approach by integrating an ensemble learning strategy to help select efficient, stable, and high confidential variables from omics-based data. Using a bagging strategy in combination of a parametric method or inflection point search method for cut-off threshold determination. This package can integrate and vote variables generated from multiple LASSO models to determine the optimal candidates. Luo H, Zhao Q, et al (2020) <doi:10.1126/scitranslmed.aax7533> for more details.
Generating realizations of a fractal Brownian function on uniform 1D & 2D grid with classic and generic versions of the Voss algorithm (random sequential additions).
Vega and Vega-Lite parse text in JSON notation to render chart-specifications into HTML'. This package is used to facilitate the rendering. It also provides a means to interact with signals, events, and datasets in a Vega chart using JavaScript or Shiny'.
Multi-precision library that allows to store and operate with arbitrarily big integers without loss of precision. It includes a large list of tools to work with them, like: - Arithmetic and logic operators - Modular-arithmetic operators - Computer Number Theory utilities - Probabilistic primality tests - Factorization algorithms - Random generators of diferent types of integers.
This package provides a framework for generating virtual species distributions, a procedure increasingly used in ecology to improve species distribution models. This package integrates the existing methodological approaches with the objective of generating virtual species distributions with increased ecological realism.
This package provides a set of visual input controls for Shiny apps to facilitate filtering across multiple outputs.
This package provides a versatile range of functions, including exploratory data analysis, time-series analysis, organizational network analysis, and data validation, whilst at the same time implements a set of best practices in analyzing and visualizing data specific to Microsoft Viva Insights'.
Visualize the trends and historical downloads from packages in the CRAN repository. Data is obtained by using the API to query the database from the RStudio CRAN mirror.
This package performs variable selection/feature reduction under a clustering or classification framework. In particular, it can be used in an automated fashion using mixture model-based methods ('teigen and mclust are currently supported). Can account for mixtures of non-Gaussian distributions via Manly transform (via ManlyMix'). See Andrews and McNicholas (2014) <doi:10.1007/s00357-013-9139-2> and Neal and McNicholas (2023) <doi:10.48550/arXiv.2305.16464>.
Estimates joint marker (longitudinal) and survival (time-to-event) outcomes using variational approximations. The package supports multivariate markers allowing for correlated error terms and multiple types of survival outcomes which may be left-truncated, right-censored, and recurrent. Time-varying fixed and random covariate effects are supported along with non-proportional hazards.
This package provides statistical methods for the design and analysis of a calibration study, which aims for calibrating measurements using two different methods. The package includes sample size calculation, sample selection, regression analysis with error-in measurements and change-point regression. The method is described in Tian, Durazo-Arvizu, Myers, et al. (2014) <DOI:10.1002/sim.6235>.
Variance function estimation for models proposed by W. Sadler in his variance function program ('VFP', www.aacb.asn.au/AACB/Resources/Variance-Function-Program). Here, the idea is to fit multiple variance functions to a data set and consequently assess which function reflects the relationship Var ~ Mean best. For in-vitro diagnostic ('IVD') assays modeling this relationship is of great importance when individual test-results are used for defining follow-up treatment of patients.
This package provides low-level access to GDAL functionality. GDAL is the Geospatial Data Abstraction Library a translator for raster and vector geospatial data formats that presents a single raster abstract data model and single vector abstract data model to the calling application for all supported formats <https://gdal.org/>. This package is focussed on providing exactly and only what GDAL does, to enable developing further tools.
Calculates voter transitions comparing two elections, using the function solve.QP() in package quadprog'.
This package provides a graphical user interface to integrate, visualize and explore results from linkage and quantitative trait loci analysis, together with genomic information for autopolyploid species. The app is meant for interactive use and allows users to optionally upload different sources of information, including gene annotation and alignment files, enabling the exploitation and search for candidate genes in a genome browser. In its current version, VIEWpoly supports inputs from MAPpoly', polymapR', diaQTL', QTLpoly', polyqtlR', GWASpoly', and HIDECAN packages.