Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Perform wavelet analysis (orthogonal,translation invariant, tensorial, 1-2-3d transforms, thresholding, block thresholding, linear,...) with applications to data compression or denoising/regression. The core of the code is a port of MATLAB Wavelab toolbox written by D. Donoho, A. Maleki and M. Shahram (<https://statweb.stanford.edu/~wavelab/>).
Conversion between attitude representations: DCM, Euler angles, Quaternions, and Euler vectors. Plus conversion between 2 Euler angle set types (xyx, yzy, zxz, xzx, yxy, zyz, xyz, yzx, zxy, xzy, yxz, zyx). Fully vectorized code, with warnings/errors for Euler angles (singularity, out of range, invalid angle order), DCM (orthogonality, not proper, exceeded tolerance to unity determinant) and Euler vectors(not unity). Also quaternion and other useful functions. Based on SpinCalc by John Fuller and SpinConv by Paolo de Leva.
Build regular expressions piece by piece using human readable code. This package is designed for interactive use. For package development, use the rebus.* dependencies.
Designed to create and display complex tables with R, the rtables R package allows cells in an rtables object to contain any high-dimensional data structure, which can then be displayed with cell-specific formatting instructions. Additionally, the rtables.officer package supports export formats related to the Microsoft Office software suite, including Microsoft Word ('docx') and Microsoft PowerPoint ('pptx').
This package provides a very lightweight package that writes out log messages in an opinionated way. Simpler and lighter than other logging packages, rlog provides a compact feature set that focuses on getting the job done in a Unix-like way.
Flexible framework for ecological restoration planning. It aims to identify priority areas for restoration efforts using optimization algorithms (based on Justeau-Allaire et al. 2021 <doi:10.1111/1365-2664.13803>). Priority areas can be identified by maximizing landscape indices, such as the effective mesh size (Jaeger 2000 <doi:10.1023/A:1008129329289>), or the integral index of connectivity (Pascual-Hortal & Saura 2006 <doi:10.1007/s10980-006-0013-z>). Additionally, constraints can be used to ensure that priority areas exhibit particular characteristics (e.g., ensure that particular places are not selected for restoration, ensure that priority areas form a single contiguous network). Furthermore, multiple near-optimal solutions can be generated to explore multiple options in restoration planning. The package leverages the Choco-solver software to perform optimization using constraint programming (CP) techniques (<https://choco-solver.org/>).
This package performs kernel based estimates on in-memory raster images from the raster package. These kernel estimates include local means variances, modes, and quantiles. All results are in the form of raster images, preserving original resolution and projection attributes.
Allows the user to view an image in full screen when clicking on it in RMarkdown documents and shiny applications. The package relies on the JavaScript library intense-images'. See <https://tholman.com/intense-images/> for more information.
This package provides functionality to read files containing observations which consist of arbitrary key/value pairs.
This package provides methods for analysis of compositional data including robust methods (<doi:10.1007/978-3-319-96422-5>), imputation of missing values (<doi:10.1016/j.csda.2009.11.023>), methods to replace rounded zeros (<doi:10.1080/02664763.2017.1410524>, <doi:10.1016/j.chemolab.2016.04.011>, <doi:10.1016/j.csda.2012.02.012>), count zeros (<doi:10.1177/1471082X14535524>), methods to deal with essential zeros (<doi:10.1080/02664763.2016.1182135>), (robust) outlier detection for compositional data, (robust) principal component analysis for compositional data, (robust) factor analysis for compositional data, (robust) discriminant analysis for compositional data (Fisher rule), robust regression with compositional predictors, functional data analysis (<doi:10.1016/j.csda.2015.07.007>) and p-splines (<doi:10.1016/j.csda.2015.07.007>), contingency (<doi:10.1080/03610926.2013.824980>) and compositional tables (<doi:10.1111/sjos.12326>, <doi:10.1111/sjos.12223>, <doi:10.1080/02664763.2013.856871>) and (robust) Anderson-Darling normality tests for compositional data as well as popular log-ratio transformations (addLR, cenLR, isomLR, and their inverse transformations). In addition, visualisation and diagnostic tools are implemented as well as high and low-level plot functions for the ternary diagram.
Multivariate regression methodologies including classical reduced-rank regression (RRR) studied by Anderson (1951) <doi:10.1214/aoms/1177729580> and Reinsel and Velu (1998) <doi:10.1007/978-1-4757-2853-8>, reduced-rank regression via adaptive nuclear norm penalization proposed by Chen et al. (2013) <doi:10.1093/biomet/ast036> and Mukherjee et al. (2015) <doi:10.1093/biomet/asx080>, robust reduced-rank regression (R4) proposed by She and Chen (2017) <doi:10.1093/biomet/asx032>, generalized/mixed-response reduced-rank regression (mRRR) proposed by Luo et al. (2018) <doi:10.1016/j.jmva.2018.04.011>, row-sparse reduced-rank regression (SRRR) proposed by Chen and Huang (2012) <doi:10.1080/01621459.2012.734178>, reduced-rank regression with a sparse singular value decomposition (RSSVD) proposed by Chen et al. (2012) <doi:10.1111/j.1467-9868.2011.01002.x> and sparse and orthogonal factor regression (SOFAR) proposed by Uematsu et al. (2019) <doi:10.1109/TIT.2019.2909889>.
Takes matched and unmatched data and calculates Rosenbaum bounds for the treatment effect. Calculates bounds for binary outcome data, Hodges-Lehmann point estimates, Wilcoxon signed-rank test for matched data and matched IV estimators, Wilcoxon sum rank test, and for data with multiple matched controls. The sensitivity analysis methods in this package are documented in Rosenbaum (2002) Observational Studies, <doi:10.1007/978-1-4757-3692-2>, Springer-Verlag.
This package provides a flexible and streamlined pipeline for formatting, analyzing, and visualizing omics data, regardless of omics type (e.g. transcriptomics, proteomics, metabolomics). The package includes tools for shaping input data into analysis-ready structures, fitting linear or mixed-effect models, extracting key contrasts, and generating a rich variety of ready-to-use publication-quality plots. Designed for transparency and reproducibility across a wide range of study designs, with customizable components for statistical modeling.
Description of the tables, both grouped and not grouped, with some associated data management actions, such as sorting the terms of the variables and deleting terms with zero numbers.
Accessible and flexible implementation of three ecoacoustic indices that are less commonly available in existing R frameworks: Background Noise, Soundscape Power and Soundscape Saturation. The functions were design to accommodate a variety of sampling designs. Users can tailor calculations by specifying spectrogram time bin size, amplitude thresholds and normality tests. By simplifying computation and standardizing reproducible methods, the package aims to support ecoacoustics studies. For more details about the indices read Towsey (2014) <doi:10.1016/j.procs.2014.05.063> and Burivalova (2017) <doi:10.1111/cobi.12968>.
Easily Download Analysis-Ready Crash Data from the U.S. National Highway Traffic Safety Administration.
An R Commander "plug-in" extending functionality of linear models and providing an interface to Partial Least Squares Regression and Linear and Quadratic Discriminant analysis. Several statistical summaries are extended, predictions are offered for additional types of analyses, and extra plots, tests and mixed models are available.
Accurate prediction of subject recruitment for Randomized Clinical Trials (RCT) remains an ongoing challenge. Many previous prediction models rely on parametric assumptions. We present functions for non-parametric RCT recruitment prediction under several scenarios.
This package performs robust estimation and inference when using covariate adjustment and/or covariate-adaptive randomization in randomized clinical trials. Ting Ye, Jun Shao, Yanyao Yi, Qinyuan Zhao (2023) <doi:10.1080/01621459.2022.2049278>. Ting Ye, Marlena Bannick, Yanyao Yi, Jun Shao (2023) <doi:10.1080/24754269.2023.2205802>. Ting Ye, Jun Shao, Yanyao Yi (2023) <doi:10.1093/biomet/asad045>. Marlena Bannick, Jun Shao, Jingyi Liu, Yu Du, Yanyao Yi, Ting Ye (2024) <doi:10.1093/biomet/asaf029>. Xiaoyu Qiu, Yuhan Qian, Jaehwan Yi, Jinqiu Wang, Yu Du, Yanyao Yi, Ting Ye (2025) <doi:10.48550/arXiv.2408.12541>.
Set of tools to manipulate the JDemetra+ workspaces. Based on the RJDemetra package (which interfaces with version 2 of the JDemetra+ (<https://github.com/jdemetra/jdemetra-app>), the seasonal adjustment software officially recommended to the members of the European Statistical System (ESS) and the European System of Central Banks). This package provides access to additional workspace manipulation functions such as metadata manipulation, raw paths and wrangling of several workspaces simultaneously. These additional functionalities are useful as part of a CVS data production chain.
An implementation of the Heroicons icon library for shiny applications and other R web-based projects. You can search, render, and customize icons without CSS or JavaScript dependencies.
An R package for multiple imputation using chained random forests. Implemented methods can handle missing data in mixed types of variables by using prediction-based or node-based conditional distributions constructed using random forests. For prediction-based imputation, the method based on the empirical distribution of out-of-bag prediction errors of random forests and the method based on normality assumption for prediction errors of random forests are provided for imputing continuous variables. And the method based on predicted probabilities is provided for imputing categorical variables. For node-based imputation, the method based on the conditional distribution formed by the predicting nodes of random forests, and the method based on proximity measures of random forests are provided. More details of the statistical methods can be found in Hong et al. (2020) <arXiv:2004.14823>.
An extremely simple stack data type, implemented with R6 classes. The size of the stack increases as needed, and the amortized time complexity is O(1). The stack may contain arbitrary objects.
This package implements the methodology of "Cannings, T. I. and Samworth, R. J. (2017) Random-projection ensemble classification, J. Roy. Statist. Soc., Ser. B. (with discussion), 79, 959--1035". The random projection ensemble classifier is a general method for classification of high-dimensional data, based on careful combination of the results of applying an arbitrary base classifier to random projections of the feature vectors into a lower-dimensional space. The random projections are divided into non-overlapping blocks, and within each block the projection yielding the smallest estimate of the test error is selected. The random projection ensemble classifier then aggregates the results of applying the base classifier on the selected projections, with a data-driven voting threshold to determine the final assignment.