Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a function for fitting cumulative link, adjacent category, forward and backward continuation ratio, and stereotype ordinal response models when the number of parameters exceeds the sample size, using the the generalized monotone incremental forward stagewise method.
Inspired by S-PLUS function objects.summary(), provides a function with the same name that returns data class, storage mode, mode, type, dimension, and size information for R objects in the specified environment. Various filtering and sorting options are also proposed.
Implementation of a procedure for generating samples from a mixed distribution of ordinal and normal random variables with a pre-specified correlation matrix and marginal distributions. The details of the method are explained in Demirtas et al. (2015) <DOI:10.1080/10543406.2014.920868>.
This package provides a comprehensive system for designing and implementing on-farm precision field agronomic trials. You provide field data, tell ofpetrial how to design a trial, and get readily-usable trial design files and a report checks the validity and reliability of the trial design.
Convenient download functions enabling access Open Source Asset Pricing (OpenAP) data. This package enables users to download predictor portfolio returns (over 200 cross-sectional predictors with multiple portfolio construction methods) and firm characteristics (over 200 characteristics replicated from the academic asset pricing literature). Center for Research in Security Prices (CRSP)-based variables such as Price, Size, and Short-term Reversal can be downloaded with a Wharton Research Data Services (WRDS, <https://wrds-www.wharton.upenn.edu/>) subscription. For a full list of what is available, see <https://www.openassetpricing.com/>.
Identify the optimal timing for new treatment initiation during multiple state disease transition, including multistate model fitting, simulation of mean residual lifetime for a given transition state, and estimation of confidence interval. The method is referred to de Wreede, L., Fiocco, M., & Putter, H. (2011) <doi:10.18637/jss.v038.i07>.
This package provides a solver for ompr based on the R Optimization Infrastructure ('ROI'). The package makes all solvers in ROI available to solve ompr models. Please see the ompr website <https://dirkschumacher.github.io/ompr/> and package docs for more information and examples on how to use it.
Computes confidence regions on the location of response surface optima. Response surface models can be up to cubic polynomial models in up to 5 controllable factors, or Thin Plate Spline models in 2 controllable factors.
This package provides a unified object-oriented framework for numerical optimizers in R. Allows for both minimization and maximization with any optimizer, optimization over more than one function argument, measuring of computation time, setting a time limit for long optimization tasks.
Utilize an orthogonality constrained optimization algorithm of Wen & Yin (2013) <DOI:10.1007/s10107-012-0584-1> to solve a variety of dimension reduction problems in the semiparametric framework, such as Ma & Zhu (2012) <DOI:10.1080/01621459.2011.646925>, Ma & Zhu (2013) <DOI:10.1214/12-AOS1072>, Sun, Zhu, Wang & Zeng (2019) <DOI:10.1093/biomet/asy064> and Zhou, Zhu & Zeng (2021) <DOI:10.1093/biomet/asaa087>. The package also implements some existing dimension reduction methods such as hMave by Xia, Zhang, & Xu (2010) <DOI:10.1198/jasa.2009.tm09372> and partial SAVE by Feng, Wen & Zhu (2013) <DOI:10.1080/01621459.2012.746065>. It also serves as a general purpose optimization solver for problems with orthogonality constraints, i.e., in Stiefel manifold. Parallel computing for approximating the gradient is enabled through OpenMP'.
The OLStrajr package provides comprehensive functions for ordinary least squares (OLS) trajectory analysis and case-by-case OLS regression as outlined in Carrig, Wirth, and Curran (2004) <doi:10.1207/S15328007SEM1101_9> and Rogosa and Saner (1995) <doi:10.3102/10769986020002149>. It encompasses two primary functions, OLStraj() and cbc_lm(). The OLStraj() function simplifies the estimation of individual growth curves over time via OLS regression, with options for visualizing both group-level and individual-level growth trajectories and support for linear and quadratic models. The cbc_lm() function facilitates case-by-case OLS estimates and provides unbiased mean population intercept and slope estimators by averaging OLS intercepts and slopes across cases. It further offers standard error calculations across bootstrap replicates and computation of 95% confidence intervals based on empirical distributions from the resampling processes.
Construct and evaluate directed tree structures that model the process of occurrence of genetic alterations during carcinogenesis as described in Szabo, A. and Boucher, K (2002) <doi:10.1016/S0025-5564(02)00086-X>.
This package implements the Bayesian online changepoint detection method by Adams and MacKay (2007) <arXiv:0710.3742> for univariate or multivariate data. Gaussian and Poisson probability models are implemented. Provides post-processing functions with alternative ways to extract changepoints.
Two-stage design for single-arm phase II trials with time-to-event endpoints (e.g., clinical trials on immunotherapies among cancer patients) can be calculated using this package. Two notable advantages of the package: 1) It provides flexible choices from three design methods (optimal, minmax, and admissible), and 2) the power of the design is more accurately calculated using the exact variance in the one-sample log-rank test. The package can be used for 1) planning the sample sizes and other design parameters, and 2) conducting the interim and final analyses for the Go/No-go decisions. More details about the design method can be found in: Wu, J, Chen L, Wei J, Weiss H, Chauhan A. (2020). <doi:10.1002/pst.1983>.
Install and control Open Source Routing Machine ('OSRM') backend executables to prepare routing data and run/stop a local OSRM server. For computations with the running server use the osrm R package (<https://cran.r-project.org/package=osrm>).
Offers a streamlined programmatic interface to Ordnance Survey's British National Grid (BNG) index system, enabling efficient spatial indexing and analysis based on grid references. It supports a range of geospatial applications, including statistical aggregation, data visualisation, and interoperability across datasets. Designed for developers and analysts working with geospatial data in Great Britain, osbng simplifies integration with geospatial workflows and provides intuitive tools for exploring the structure and logic of the BNG system.
Processing and analyzing omics data from genomics, transcriptomics, proteomics, and metabolomics platforms. It provides functions for preprocessing, normalization, visualization, and statistical analysis, as well as machine learning algorithms for predictive modeling. omicsTools is an essential tool for researchers working with high-throughput omics data in fields such as biology, bioinformatics, and medicine.The QC-RLSC (quality controlâ based robust LOESS signal correction) algorithm is used for normalization. Dunn et al. (2011) <doi:10.1038/nprot.2011.335>.
Several Oceanographic data sets are provided for use by the oce package and for other purposes.
Seamlessly build and manipulate graph structures, leveraging its high-performance methods for filtering, joining, and mutating data. Ensures that mutations and changes to the graph are performed in place, streamlining your workflow for optimal productivity.
Aids practitioners to optimally design experiments that measure the slope divided by the intercept and provides confidence intervals for the ratio.
Objects and methods to handle and solve the min-sum location problem, also known as Fermat-Weber problem. The min-sum location problem search for a point such that the weighted sum of the distances to the demand points are minimized. See "The Fermat-Weber location problem revisited" by Brimberg, Mathematical Programming, 1, pg. 71-76, 1995. <DOI:10.1007/BF01592245>. General global optimization algorithms are used to solve the problem, along with the adhoc Weiszfeld method, see "Sur le point pour lequel la Somme des distances de n points donnes est minimum", by Weiszfeld, Tohoku Mathematical Journal, First Series, 43, pg. 355-386, 1937 or "On the point for which the sum of the distances to n given points is minimum", by E. Weiszfeld and F. Plastria, Annals of Operations Research, 167, pg. 7-41, 2009. <DOI:10.1007/s10479-008-0352-z>.
Solver for linear, quadratic, and rational programs with linear, quadratic, and rational constraints. A unified interface to different R packages is provided. Optimization problems are transformed into equivalent formulations and solved by the respective package. For example, quadratic programming problems with linear, quadratic and rational constraints can be solved by augmented Lagrangian minimization using package alabama', or by sequential quadratic programming using solver slsqp'. Alternatively, they can be reformulated as optimization problems with second order cone constraints and solved with package cccp'.
Model mixed integer linear programs in an algebraic way directly in R. The model is solver-independent and thus offers the possibility to solve a model with different solvers. It currently only supports linear constraints and objective functions. See the ompr website <https://dirkschumacher.github.io/ompr/> for more information, documentation and examples.
Quantifies hypothesis to data fit for repeated measures and longitudinal data, as described by Thorngate (1987) <doi:10.1016/S0166-4115(08)60083-7> and Grice et al., (2015) <doi:10.1177/2158244015604192>. Hypothesis and data are encoded as pairwise relative orderings which are then compared to determine the percentage of orderings in the data that are matched by the hypothesis.