Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The classical two-sample t-test works well for the normally distributed data or data with large sample size. The tcfu() and tt() tests implemented in this package provide better type-I-error control with more accurate power when testing the equality of two-sample means for skewed populations having unequal variances. These tests are especially useful when the sample sizes are moderate. The tcfu() uses the Cornish-Fisher expansion to achieve a better approximation to the true percentiles. The tt() provides transformations of the Welch's t-statistic so that the sampling distribution become more symmetric. For more technical details, please refer to Zhang (2019) <http://hdl.handle.net/2097/40235>.
Doubly-robust, non-parametric estimators for the transported average treatment effect from Rudolph, Williams, Stuart, and Diaz (2023) <doi:10.48550/arXiv.2304.00117> and the intent-to-treatment average treatment effect from Rudolph and van der Laan (2017) <doi:10.1111/rssb.12213>. Estimators are fit using cross-fitting and nuisance parameters are estimated using the Super Learner algorithm.
Inferring causation from time series data through empirical dynamic modeling (EDM), with methods such as convergent cross mapping from Sugihara et al. (2012) <doi:10.1126/science.1227079>, partial cross mapping as outlined in Leng et al. (2020) <doi:10.1038/s41467-020-16238-0>, and cross mapping cardinality as described in Tao et al. (2023) <doi:10.1016/j.fmre.2023.01.007>.
Prediction intervals for ARIMA and structural time series models using importance sampling approach with uninformative priors for model parameters, leading to more accurate coverage probabilities in frequentist sense. Instead of sampling the future observations and hidden states of the state space representation of the model, only model parameters are sampled, and the method is based solving the equations corresponding to the conditional coverage probability of the prediction intervals. This makes method relatively fast compared to for example MCMC methods, and standard errors of prediction limits can also be computed straightforwardly.
Transmission Ratio Distortion (TRD) is a genetic phenomenon where the two alleles from either parent are not transmitted to the offspring at the expected 1:1 ratio under Mendelian inheritance, leading to spurious signals in genetic association studies. Functions in this package are developed to account for this phenomenon using loglinear model and Transmission Disequilibrium Test (TDT). Some population information can also be calculated.
This package provides a framework for statistical analysis in content analysis. In addition to a pipeline for preprocessing text corpora and linking to the latent Dirichlet allocation from the lda package, plots are offered for the descriptive analysis of text corpora and topic models. In addition, an implementation of Chang's intruder words and intruder topics is provided. Sample data for the vignette is included in the toscaData package, which is available on gitHub: <https://github.com/Docma-TU/toscaData>.
To visualize the gene structure with multiple isoforms better, I developed this package to draw different transcript structures easily.
Graphic interface for text analysis, implement a few methods such as biplots, correspondence analysis, co-occurrence, clustering, topic models, correlations and sentiments.
This package provides extended data frames, with a special data frame column which contains two indexes, with potentially a nesting structure, and support for tibbles and methods for dplyr'.
Deciphering hierarchy of agents exhibiting observable dominance events is a crucial problem in several disciplines, in particular in behavioural analysis of social animals, but also in social sciences and game theory. This package implements an inference approach based on graph theory, namely to extract the optimal acyclic subset of a weighted graph of dominance; this allows for hierarchy estimation through topological sorting. The package also contains infrastructure to investigate partially defined hierarchies and hierarchy dynamics.
Optimizers for torch deep learning library. These functions include recent results published in the literature and are not part of the optimizers offered in torch'. Prospective users should test these optimizers with their data, since performance depends on the specific problem being solved. The packages includes the following optimizers: (a) adabelief by Zhuang et al (2020), <arXiv:2010.07468>; (b) adabound by Luo et al.(2019), <arXiv:1902.09843>; (c) adahessian by Yao et al.(2021) <arXiv:2006.00719>; (d) adamw by Loshchilov & Hutter (2019), <arXiv:1711.05101>; (e) madgrad by Defazio and Jelassi (2021), <arXiv:2101.11075>; (f) nadam by Dozat (2019), <https://openreview.net/pdf/OM0jvwB8jIp57ZJjtNEZ.pdf>; (g) qhadam by Ma and Yarats(2019), <arXiv:1810.06801>; (h) radam by Liu et al. (2019), <arXiv:1908.03265>; (i) swats by Shekar and Sochee (2018), <arXiv:1712.07628>; (j) yogi by Zaheer et al.(2019), <https://papers.nips.cc/paper/8186-adaptive-methods-for-nonconvex-optimization>.
An easy tool for plotting annotated timelines, grouped timelines, and exploratory graphics (boxplot/histogram/density plot/scatter plot/line plot). Filter, summarize date data by duration and convert to calendar units.
This package provides tools for performing Transition Network Analysis (TNA) to study relational dynamics, including functions for building and plotting TNA models, calculating centrality measures, and identifying dominant events and patterns. TNA statistical techniques (e.g., bootstrapping and permutation tests) ensure the reliability of observed insights and confirm that identified dynamics are meaningful. See (Saqr et al., 2025) <doi:10.1145/3706468.3706513> for more details on TNA.
The tsgc package provides comprehensive tools for the analysis and forecasting of epidemic trajectories. It is designed to model the progression of an epidemic over time while accounting for the various uncertainties inherent in real-time data. Underpinned by a dynamic Gompertz model, the package adopts a state space approach, using the Kalman filter for flexible and robust estimation of the non-linear growth pattern commonly observed in epidemic data. The reinitialization feature enhances the modelâ s ability to adapt to the emergence of new waves. The forecasts generated by the package are of value to public health officials and researchers who need to understand and predict the course of an epidemic to inform decision-making. Beyond its application in public health, the package is also a useful resource for researchers and practitioners in fields where the trajectories of interest resemble those of epidemics, such as innovation diffusion. The package includes functionalities for data preprocessing, model fitting, and forecast visualization, as well as tools for evaluating forecast accuracy. The core methodologies implemented in tsgc are based on well-established statistical techniques as described in Harvey and Kattuman (2020) <doi:10.1162/99608f92.828f40de>, Harvey and Kattuman (2021) <doi:10.1098/rsif.2021.0179>, and Ashby, Harvey, Kattuman, and Thamotheram (2024) <https://www.jbs.cam.ac.uk/wp-content/uploads/2024/03/cchle-tsgc-paper-2024.pdf>.
Presentation-quality tables are displayed as plots on an R graphics device. Although there are other packages that format tables for display, this package is unique in combining two features: (a) It is aware of the logical structure of the table being presented, and makes use of that for automatic layout and styling of the table. This avoids the need for most manual adjustments to achieve an attractive result. (b) It displays tables using ggplot2 graphics. Therefore a table can be presented anywhere a graph could be, with no more effort. External software such as LaTeX or HTML or their viewers is not required. The package provides a full set of tools to control the style and appearance of tables, including titles, footnotes and reference marks, horizontal and vertical rules, and spacing of rows and columns. Methods are included to display matrices; data frames; tables created by R's ftable(), table(), and xtabs() functions; and tables created by the tables and xtable packages. Methods can be added to display other table-like objects. A vignette is included that illustrates usage and options available in the package.
Function for sparse regression on raw text, regressing a labeling vector onto a feature space consisting of all possible phrases.
This tool is extended from methods in Bio.SeqUtils.MeltingTemp of python. The melting temperature of nucleic acid sequences can be calculated in three method, the Wallace rule (Thein & Wallace (1986) <doi:10.1016/S0140-6736(86)90739-7>), empirical formulas based on G and C content (Marmur J. (1962) <doi:10.1016/S0022-2836(62)80066-7>, Schildkraut C. (2010) <doi:10.1002/bip.360030207>, Wetmur J G (1991) <doi:10.3109/10409239109114069>, Untergasser,A. (2012) <doi:10.1093/nar/gks596>, von Ahsen N (2001) <doi:10.1093/clinchem/47.11.1956>) and nearest neighbor thermodynamics (Breslauer K J (1986) <doi:10.1073/pnas.83.11.3746>, Sugimoto N (1996) <doi:10.1093/nar/24.22.4501>, Allawi H (1998) <doi:10.1093/nar/26.11.2694>, SantaLucia J (2004) <doi:10.1146/annurev.biophys.32.110601.141800>, Freier S (1986) <doi:10.1073/pnas.83.24.9373>, Xia T (1998) <doi:10.1021/bi9809425>, Chen JL (2012) <doi:10.1021/bi3002709>, Bommarito S (2000) <doi:10.1093/nar/28.9.1929>, Turner D H (2010) <doi:10.1093/nar/gkp892>, Sugimoto N (1995) <doi:10.1016/S0048-9697(98)00088-6>, Allawi H T (1997) <doi:10.1021/bi962590c>, Santalucia N (2005) <doi:10.1093/nar/gki918>), and it can also be corrected with salt ions and chemical compound (SantaLucia J (1996) <doi:10.1021/bi951907q>, SantaLucia J(1998) <doi:10.1073/pnas.95.4.1460>, Owczarzy R (2004) <doi:10.1021/bi034621r>, Owczarzy R (2008) <doi:10.1021/bi702363u>).
Translate R control flow expressions into Tensorflow graphs.
Interface to TensorFlow Estimators <https://www.tensorflow.org/guide/estimator>, a high-level API that provides implementations of many different model types including linear models and deep neural networks.
This package provides a collection of recipe datasets scraped from <https://www.allrecipes.com/>, containing two complementary datasets: allrecipes with 14,426 general recipes, and cuisines with 2,218 recipes categorized by country of origin. Both datasets include comprehensive recipe information such as ingredients, nutritional facts (calories, fat, carbs, protein), cooking times (preparation and cooking), ratings, and review metadata. All data has been cleaned and standardized, ready for analysis.
This package provides a lightweight and focused text annotation tool built with shiny'. Provides an interactive graphical user interface for coding text documents, managing code hierarchies, creating memos, and analyzing coding patterns. Features include code co-occurrence analysis, visualization of coding patterns, comparison of multiple coding sets, and export capabilities. Supports collaborative qualitative research through standardized annotation formats and analysis tools.
This package provides functions for multivariate analysis with compositional data. Includes a function for doing compositional canonical correlation analysis. This analysis requires two data matrices of compositions, which can be adequately transformed and used as entries in a specialized program for canonical correlation analysis, that is able to deal with singular covariance matrices. The methodology is described in Graffelman et al. (2017) <doi:10.1101/144584>. Functions for log-ratio principal component analysis with condition number computations and log-ratio discriminant analysis have been added to the package.
The ToxCast Data Analysis Pipeline ('tcpl') is an R package that manages, curve-fits, plots, and stores ToxCast data to populate its linked MySQL database, invitrodb'. The package was developed for the chemical screening data curated by the US EPA's Toxicity Forecaster (ToxCast) program, but tcpl can be used to support diverse chemical screening efforts.
This package provides a step-up test for genetic rare variants in a gene or in a pathway. The method determines an optimal grouping of rare variants analytically. The method has been described in Hoffmann TJ, Marini NJ, and Witte JS (2010) <doi:10.1371/journal.pone.0013584>.