Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functionality for Bayesian analysis of replication studies using power prior approaches (Pawel et al., 2023) <doi:10.1007/s11749-023-00888-5>.
Data analysis for Project Risk Management via the Second Moment Method, Monte Carlo Simulation, Contingency Analysis, Sensitivity Analysis, Earned Value Management, Learning Curves, Design Structure Matrices, and more.
This package provides a bioinformatics method developed for analyzing the heterogeneity of single-cell populations. Phitest provides an objective and automatic method to evaluate the performance of clustering and quality of cell clusters.
Quasi likelihood-based methods for estimating linear and log-linear Poisson Network Autoregression models with p lags and covariates. Tools for testing the linearity versus several non-linear alternatives. Tools for simulation of multivariate count distributions, from linear and non-linear PNAR models, by using a specific copula construction. References include: Armillotta, M. and K. Fokianos (2023). "Nonlinear network autoregression". Annals of Statistics, 51(6): 2526--2552. <doi:10.1214/23-AOS2345>. Armillotta, M. and K. Fokianos (2024). "Count network autoregression". Journal of Time Series Analysis, 45(4): 584--612. <doi:10.1111/jtsa.12728>. Armillotta, M., Tsagris, M. and Fokianos, K. (2024). "Inference for Network Count Time Series with the R Package PNAR". The R Journal, 15/4: 255--269. <doi:10.32614/RJ-2023-094>.
Returns almost all features that has been extracted from Position Specific Scoring Matrix (PSSM) so far, which is a matrix of L rows (L is protein length) and 20 columns produced by PSI-BLAST which is a program to produce PSSM Matrix from multiple sequence alignment of proteins see <https://www.ncbi.nlm.nih.gov/books/NBK2590/> for mor details. some of these features are described in Zahiri, J., et al.(2013) <DOI:10.1016/j.ygeno.2013.05.006>, Saini, H., et al.(2016) <DOI:10.17706/jsw.11.8.756-767>, Ding, S., et al.(2014) <DOI:10.1016/j.biochi.2013.09.013>, Cheng, C.W., et al.(2008) <DOI:10.1186/1471-2105-9-S12-S6>, Juan, E.Y., et al.(2009) <DOI:10.1109/CISIS.2009.194>.
Monte Carlo based model choice for applied phylogenetics of continuous traits. Method described in Carl Boettiger, Graham Coop, Peter Ralph (2012) Is your phylogeny informative? Measuring the power of comparative methods, Evolution 66 (7) 2240-51. <doi:10.1111/j.1558-5646.2011.01574.x>.
Tailoring the optimal biomarker(s) for disease screening or diagnosis based on subjects individual characteristics.
This package provides a polycross is the pollination by natural hybridization of a group of genotypes, generally selected, grown in isolation from other compatible genotypes in such a way to promote random open pollination. A particular practical application of the polycross method occurs in the production of a synthetic variety resulting from cross-pollinated plants. Laying out these experiments in appropriate designs, known as polycross designs, would not only save experimental resources but also gather more information from the experiment. Different experimental situations may arise in polycross nurseries which may be requiring different polycross designs (Varghese et. al. (2015) <doi:10.1080/02664763.2015.1043860>. " Experimental designs for open pollination in polycross trials"). This package contains a function named PD() which generates nine types of polycross designs suitable for various experimental situations.
Calculate the optimal vertex partition of a graph using the persistence as objective function. These subroutines have been used in Avellone et al. <doi:10.1007/s10288-023-00559-z>.
Image-based color matching using the "Mycological Colour Chart" by Rayner (1970, ISBN:9780851980263) and its associated fungal pigments. This package will assist mycologists in identifying color during morphological analysis.
Explore the world of R graphics with fun and interesting plot functions! Use make_LED() to create dynamic LED screens, draw interconnected rings with Olympic_rings(), and make festive Chinese couplets with chunlian(). Unleash your creativity and turn data into exciting visuals!
Generation of a chosen number of count, binary, ordinal, and continuous random variables, with specified correlations and marginal properties. The details of the method are explained in Demirtas (2012) <DOI:10.1002/sim.5362>.
This package provides functions for conducting power analysis in ANOVA designs, including between-, within-, and mixed-factor designs, with full support for both main effects and interactions. The package allows calculation of statistical power, required total sample size, significance level, and minimal detectable effect sizes expressed as partial eta squared or Cohen's f for ANOVA terms and planned contrasts. In addition, complementary functions are included for common related tests such as t-tests and correlation tests, making the package a convenient toolkit for power analysis in experimental psychology and related fields.
Utilize the Bayesian prior and posterior predictive checking approach to provide a statistical assessment of replication success and failure. The package is based on the methods proposed in Zhao,Y., Wen X.(2021) <arXiv:2105.03993>.
Streamline the creation of Docker images with R packages and dependencies embedded. The pracpac package provides a usethis'-like interface to creating Dockerfiles with dependencies managed by renv'. The pracpac functionality is described in Nagraj and Turner (2023) <doi:10.48550/arXiv.2303.07876>.
This package provides a collection of methods for commonly undertaken analytical tasks, primarily developed for Public Health Scotland (PHS) analysts, but the package is also generally useful to others working in the healthcare space, particularly since it has functions for working with Community Health Index (CHI) numbers. The package can help to make data manipulation and analysis more efficient and reproducible.
This package provides functions for creating color palettes, visualizing palettes, modifying colors, and assigning colors for plotting.
The spatial interpolation of genetic distances between samples is based on a modified kriging method that accepts a genetic distance matrix and generates a map of probability of lineage presence. This package also offers tools to generate a map of potential contact zones between groups with user-defined thresholds in the tree to account for old and recent divergence. Additionally, it has functions for IDW interpolation using genetic data and midpoints.
Authentication, user administration, hosting, and additional infrastructure for shiny apps. See <https://polished.tech> for additional documentation and examples.
It enables sparklyr to integrate with Spark Connect', and Databricks Connect by providing a wrapper over the PySpark python library.
The goal of PlotFTIR is to easily and quickly kick-start the production of journal-quality Fourier Transform Infra-Red (FTIR) spectral plots in R using ggplot2'. The produced plots can be published directly or further modified by ggplot2 functions. L'objectif de PlotFTIR est de démarrer facilement et rapidement la production des tracés spectraux de spectroscopie infrarouge à transformée de Fourier (IRTF) de qualité journal dans R à l'aide de ggplot2'. Les tracés produits peuvent être publiés directement ou modifiés davantage par les fonctions ggplot2'.
An interactive document for preprocessing the dataset using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://analyticmodels.shinyapps.io/PREPShiny/>.
These are harmonized datasets produced as part of the Clinical Trials Network (CTN) protocol number 0094. This is a US National Institute of Drug Abuse (NIDA) funded project; to learn more go to <https://ctnlibrary.org/protocol/ctn0094/>. These are datasets which have the data harmonized from CTN-0027 (<https://ctnlibrary.org/protocol/ctn0027/>), CTN-0030 (<https://ctnlibrary.org/protocol/ctn0030/>), and CTN-0051 (<https://ctnlibrary.org/protocol/ctn0051/>).
Support functions, data sets, and vignettes for the psych package. Contains several of the biggest data sets for the psych package as well as four vignettes. A few helper functions for file manipulation are included as well. For more information, see the <https://personality-project.org/r/> web page.