Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to nonparametrically assess assumptions necessary to prevent the surrogate paradox through hypothesis tests of stochastic dominance, monotonicity of regression functions, and non-negative residual treatment effects. More details are available in Hsiao et al 2025 (under review). A tutorial for this package can be found at <https://laylaparast.com/home/SurrogateParadoxTest.html>.
Identifying spatially variable genes is critical in linking molecular cell functions with tissue phenotypes. This package utilizes a granularity-based dimension-agnostic tool, single-cell big-small patch (scBSP), implementing sparse matrix operation and KD tree methods for distance calculation, for the identification of spatially variable genes on large-scale data. The detailed description of this method is available at Wang, J. and Li, J. et al. 2023 (Wang, J. and Li, J. (2023), <doi:10.1038/s41467-023-43256-5>).
This package implements Surprisal analysis for gene expression data such as RNA-seq or microarray experiments. Surprisal analysis is an information-theoretic method that decomposes gene expression data into a baseline state and constraint-associated deviations, capturing coordinated gene expression patterns under different biological conditions. References: Kravchenko-Balasha N. et al. (2014) <doi:10.1371/journal.pone.0108549>. Zadran S. et al. (2014) <doi:10.1073/pnas.1414714111>. Su Y. et al. (2019) <doi:10.1371/journal.pcbi.1007034>. Bogaert K. A. et al. (2018) <doi:10.1371/journal.pone.0195142>.
The skew logistic distribution is a quantile-defined generalisation of the logistic distribution (van Staden and King 2015). Provides random numbers, quantiles, probabilities, densities and density quantiles for the distribution. It provides Quantile-Quantile plots and method of L-Moments estimation (including asymptotic standard errors) for the distribution.
Offers a comprehensive approach for analysing stratified 2x2 contingency tables. It facilitates the calculation of odds ratios, 95% confidence intervals, and conducts chi-squared, Cochran-Mantel-Haenszel, Mantel-Haenszel, and Breslow-Day-Tarone tests. The package is particularly useful in fields like epidemiology and social sciences where stratified analysis is essential. The package also provides interpretative insights into the results, aiding in the understanding of statistical outcomes.
Simulates data from model objects (e.g., from lm(), glm()), and plots this along with the original data to compare how well the simulated data matches the original data to determine model fit.
An R Shiny application dedicated to the intra-site spatial analysis of piece-plotted archaeological remains, making the two and three-dimensional spatial exploration of archaeological data as user-friendly as possible. Documentation about SEAHORS is provided by the vignette included in this package and by the companion scientific paper: Royer, Discamps, Plutniak, Thomas (2023, PCI Archaeology, <doi:10.5281/zenodo.7674698>).
Simulation of simple and complex survival data including recurrent and multiple events and competing risks. See Moriña D, Navarro A. (2014) <doi:10.18637/jss.v059.i02> and Moriña D, Navarro A. (2017) <doi:10.1080/03610918.2016.1175621>.
This package provides functions to enumerate and reference figures, tables and equations in R Markdown documents that do not support these features (thus not bookdown or quarto'. Supporting functions for using Sweave and Knitr with LyX'.
This package provides a tool to plot data with a large sample size using shiny and plotly'. Relatively small samples are obtained from the original data using a specific algorithm. The samples are updated according to a user-defined x range. Jonas Van Der Donckt, Jeroen Van Der Donckt, Emiel Deprost (2022) <https://github.com/predict-idlab/plotly-resampler>.
Sentiment Analysis via deep learning and gradient boosting models with a lot of the underlying hassle taken care of to make the process as simple as possible. In addition to out-performing traditional, lexicon-based sentiment analysis (see <https://benwiseman.github.io/sentiment.ai/#Benchmarks>), it also allows the user to create embedding vectors for text which can be used in other analyses. GPU acceleration is supported on Windows and Linux.
Implementation of the SAM prior and generation of its operating characteristics for dynamically borrowing information from historical data. For details, please refer to Yang et al. (2023) <doi:10.1111/biom.13927>.
This package performs repeated nested cross-validation for Cox Proportionate Hazards, Cox Lasso, Survival Random Forest, and their ensemble. Returns internally validated concordance index, time-dependent area under the curve, Brier score, calibration slope, and statistical testing of non-linear ensemble outperforming the baseline Cox model. In this, it helps researchers to quantify the gain of using a more complex survival model, or justify its redundancy. Equally, it shows the performance value of the non-linear and interaction terms, and may highlight the need of further feature transformation. Further details can be found in Shamsutdinova, Stamate, Roberts, & Stahl (2022) "Combining Cox Model and Tree-Based Algorithms to Boost Performance and Preserve Interpretability for Health Outcomes" <doi:10.1007/978-3-031-08337-2_15>, where the method is described as Ensemble 1.
This package provides tools for the stochastic simulation of effectiveness scores to mitigate data-related limitations of Information Retrieval evaluation research, as described in Urbano and Nagler (2018) <doi:10.1145/3209978.3210043>. These tools include: fitting, selection and plotting distributions to model system effectiveness, transformation towards a prespecified expected value, proxy to fitting of copula models based on these distributions, and simulation of new evaluation data from these distributions and copula models.
This package provides a set of function that implements for seasonal multivariate time series analysis based on Seasonal Generalized Space Time Autoregressive with Seemingly Unrelated Regression (S-GSTAR-SUR) Model by Setiawan(2016)<https://www.researchgate.net/publication/316517889_S-GSTAR-SUR_model_for_seasonal_spatio_temporal_data_forecasting>.
Fits a structural equation multidimensional scaling (SEMDS) model for asymmetric and three-way input dissimilarities. It assumes that the dissimilarities are measured with errors. The latent dissimilarities are estimated as factor scores within an SEM framework while the objects are represented in a low-dimensional space as in MDS.
To meet the needs of statistical power calculation for stepped wedge cluster randomized trials, we developed this software. Different parameters can be specified by users for different scenarios, including: cross-sectional and cohort designs, binary and continuous outcomes, marginal (GEE) and conditional models (mixed effects model), three link functions (identity, log, logit links), with and without time effects (the default specification assumes no-time-effect) under exchangeable, nested exchangeable and block exchangeable correlation structures. Unequal numbers of clusters per sequence are also allowed. The methods included in this package: Zhou et al. (2020) <doi:10.1093/biostatistics/kxy031>, Li et al. (2018) <doi:10.1111/biom.12918>. Supplementary documents can be found at: <https://ysph.yale.edu/cmips/research/software/study-design-power-calculation/swdpwr/>. The Shiny app for swdpwr can be accessed at: <https://jiachenchen322.shinyapps.io/swdpwr_shinyapp/>. The package also includes functions that perform calculations for the intra-cluster correlation coefficients based on the random effects variances as input variables for continuous and binary outcomes, respectively.
Allows the user to animate shiny elements when scrolling to view them. The animations are activated using the scrollrevealjs library. See <https://scrollrevealjs.org/> for more information.
An implementation of self-exciting point process model for information cascades, which occurs when many people engage in the same acts after observing the actions of others (e.g. post resharings on Facebook or Twitter). It provides functions to estimate the infectiousness of an information cascade and predict its popularity given the observed history. See <http://snap.stanford.edu/seismic/> for more information and datasets.
Stochastic Newton Sampler (SNS) is a Metropolis-Hastings-based, Markov Chain Monte Carlo sampler for twice differentiable, log-concave probability density functions (PDFs) where the proposal density function is a multivariate Gaussian resulting from a second-order Taylor-series expansion of log-density around the current point. The mean of the Gaussian proposal is the full Newton-Raphson step from the current point. A Boolean flag allows for switching from SNS to Newton-Raphson optimization (by choosing the mean of proposal function as next point). This can be used during burn-in to get close to the mode of the PDF (which is unique due to concavity). For high-dimensional densities, mixing can be improved via state space partitioning strategy, in which SNS is applied to disjoint subsets of state space, wrapped in a Gibbs cycle. Numerical differentiation is available when analytical expressions for gradient and Hessian are not available. Facilities for validation and numerical differentiation of log-density are provided. Note: Formerly available versions of the MfUSampler can be obtained from the archive <https://cran.r-project.org/src/contrib/Archive/MfUSampler/>.
Bayesian inference for parametric proportional hazards spatial survival models; flexible spatial survival models. See Benjamin M. Taylor, Barry S. Rowlingson (2017) <doi:10.18637/jss.v077.i04>.
This package provides functions to install SciViews additions to R, and more tools.
Computes clustering by fitting Gaussian mixture models (GMM) via stochastic approximation following the methods of Nguyen and Jones (2018) <doi:10.1201/9780429446177>. It also provides some test data generation and plotting functionality to assist with this process.
The Semi Parametric Piecewise Distribution blends the Generalized Pareto Distribution for the tails with a kernel based interior.