Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package performs two-sample comparisons based on average hazard with survival weight (AHSW) or general censoring-free incidence rate (CFIR) proposed by Uno and Horiguchi (2023) <doi:10.1002/sim.9651>.
Message translation is often managed with po files and the gettext programme, but sometimes another solution is needed. In contrast to po files, a more flexible approach is used as in the Fluent <https://projectfluent.org/> project with R Markdown snippets. The key-value approach allows easier handling of the translated messages.
Add significance marks to any R Boxplot, including a given significance niveau.
This package implements the Scout method for regression, described in "Covariance-regularized regression and classification for high-dimensional problems", by Witten and Tibshirani (2008), Journal of the Royal Statistical Society, Series B 71(3): 615-636.
This package provides peak functions, which enable us to detect peaks in time series. The methods implemented in this package are based on Girish Keshav Palshikar (2009) <https://www.researchgate.net/publication/228853276_Simple_Algorithms_for_Peak_Detection_in_Time-Series>.
Spatial transcriptomics iterative hierarchical clustering ('stIHC'), is a method for identifying spatial gene co-expression modules, defined as groups of genes with shared spatial expression patterns. The method is applicable across spatial transcriptomics technologies with differing spatial resolution, and provides a framework for investigating the spatial organisation of gene expression in tissues. For further details, see Higgins C., Li J.J., Carey M. <doi:10.1002/qub2.70011>.
RNA sequencing analysis methods are often derived by relying on hypothetical parametric models for read counts that are not likely to be precisely satisfied in practice. Methods are often tested by analyzing data that have been simulated according to the assumed model. This testing strategy can result in an overly optimistic view of the performance of an RNA-seq analysis method. We develop a data-based simulation algorithm for RNA-seq data. The vector of read counts simulated for a given experimental unit has a joint distribution that closely matches the distribution of a source RNA-seq dataset provided by the user. Users control the proportion of genes simulated to be differentially expressed (DE) and can provide a vector of weights to control the distribution of effect sizes. The algorithm requires a matrix of RNA-seq read counts with large sample sizes in at least two treatment groups. Many datasets are available that fit this standard.
An assortment of helper functions for doing structural equation modeling, mainly by lavaan for now. Most of them are time-saving functions for common tasks in doing structural equation modeling and reading the output. This package is not for functions that implement advanced statistical procedures. It is a light-weight package for simple functions that do simple tasks conveniently, with as few dependencies as possible.
Sampling procedures from the book Stichproben - Methoden und praktische Umsetzung mit R by Goeran Kauermann and Helmut Kuechenhoff (2010).
This package provides a set of functions to build a scoring model from beginning to end, leading the user to follow an efficient and organized development process, reducing significantly the time spent on data exploration, variable selection, feature engineering, binning and model selection among other recurrent tasks. The package also incorporates monotonic and customized binning, scaling capabilities that transforms logistic coefficients into points for a better business understanding and calculates and visualizes classic performance metrics of a classification model.
Selective sweep is a biological phenomenon in which genetic variation between neighboring beneficial mutant alleles is swept away due to the effect of genetic hitchhiking. Detection of selective sweep is not well acquainted as well as it is a laborious job. This package is a user friendly approach for detecting selective sweep in genomic regions. It uses a Random Forest based machine learning approach to predict selective sweep from VCF files as an input. Input of this function, train data and new data, can be computed using the project <https://github.com/AbhikSarkar1999/SweepDiscovery> in GitHub'. This package has been developed by using the concept of Pavlidis and Alachiotis (2017) <doi:10.1186/s40709-017-0064-0>.
Phenotypic analysis of field trials using mixed models with and without spatial components. One of a series of statistical genetic packages for streamlining the analysis of typical plant breeding experiments developed by Biometris. Some functions have been created to be used in conjunction with the R package asreml for the ASReml software, which can be obtained upon purchase from VSN international (<https://vsni.co.uk/software/asreml-r/>).
This data-driven phylogenetic comparative method fits stabilizing selection models to continuous trait data, building on the ouch methodology of Butler and King (2004) <doi:10.1086/426002>. The main functions fit a series of Hansen models using stepwise AIC, then identify cases of convergent evolution where multiple lineages have shifted to the same adaptive peak. For more information see Ingram and Mahler (2013) <doi:10.1111/2041-210X.12034>.
This package provides a comprehensive framework for quantifying the fundamental thermodynamic parameters of adsorption reactionsâ changes in the standard Gibbs free energy (delta G), enthalpy (delta H), and entropy (delta S)â is essential for understanding the spontaneity, heat effects, and molecular ordering associated with sorption processes. By analysing temperature-dependent equilibrium data, thermodynamic interpretation expands adsorption studies beyond conventional isotherm fitting, offering deeper insight into underlying mechanisms and surfaceâ solute interactions. Such an approach typically involves evaluating equilibrium coefficients across multiple temperatures and non-temperature treatments, deriving thermodynamic parameters using established thermodynamic relationships, and determining delta G as a temperature-specific indicator of adsorption favourability. This analytical pathway is widely applicable across environmental science, soil science, chemistry, materials science, and engineering, where reliable assessment of sorption behaviour is critical for examining contaminant retention, nutrient dynamics, and the behaviour of natural and engineered surfaces. By focusing specifically on thermodynamic inference, this framework complements existing adsorption isotherm-fitting packages such as âAdIsMFâ <https://CRAN.R-project.org/package=AdIsMF> <doi:10.32614/CRAN.package.AdIsMF>, and strengthens the scientific basis for interpreting adsorption energetics in both research and applied contexts. Details can be found in Roy et al. (2025) <doi:10.1007/s11270-025-07963-7>.
An interface to spdep to integrate with sf objects and the tidyverse'.
Fast multi-trait and multi-trail Genome Wide Association Studies (GWAS) following the method described in Zhou and Stephens. (2014), <doi:10.1038/nmeth.2848>. One of a series of statistical genetic packages for streamlining the analysis of typical plant breeding experiments developed by Biometris.
Allows objects to be stored on disc and automatically recalled into memory, as required, by delayed assignment.
Singular spectrum analysis (SSA) decomposes a time series into interpretable components like trends, oscillations, and noise without strict distributional and structural assumptions. For method details see Golyandina N, Zhigljavsky A (2013). <doi:10.1007/978-3-642-34913-3>.
Computation of second-generation p-values as described in Blume et al. (2018) <doi:10.1371/journal.pone.0188299> and Blume et al. (2019) <doi:10.1080/00031305.2018.1537893>. There are additional functions which provide power and type I error calculations, create graphs (particularly suited for large-scale inference usage), and a function to estimate false discovery rates based on second-generation p-value inference.
This package provides a simple, one-command package which runs an interactive dashboard capable of common visualizations for single cell RNA-seq. SeuratExplorer requires a processed Seurat object, which is saved as rds or qs2 file.
Input/Output, processing and visualization of spectra taken with different spectrometers, including SVC (Spectra Vista), ASD and PSR (Spectral Evolution). Implements an S3 class spectra that other packages can build on. Provides methods to access, plot, manipulate, splice sensor overlap, vector normalize and smooth spectra.
Spatial Stochastic Frontier Analysis (SSFA) is an original method for controlling the spatial heterogeneity in Stochastic Frontier Analysis (SFA) models, for cross-sectional data, by splitting the inefficiency term into three terms: the first one related to spatial peculiarities of the territory in which each single unit operates, the second one related to the specific production features and the third one representing the error term.
This package provides a multidimensional dataset of students performance assessment in high school physics. The SPHERE dataset was collected from 497 students in four public high schools specifically measuring their conceptual understanding, scientific ability, and attitude toward physics [see Santoso et al. (2024) <doi:10.17632/88d7m2fv7p.1>]. The data collection was conducted using some research based assessments established by the physics education research community. They include the Force Concept Inventory, the Force and Motion Conceptual Evaluation, the Rotational and Rolling Motion Conceptual Survey, the Fluid Mechanics Concept Inventory, the Mechanical Waves Conceptual Survey, the Thermal Concept Evaluation, the Survey of Thermodynamic Processes and First and Second Laws, the Scientific Abilities Assessment Rubrics, and the Colorado Learning Attitudes about Science Survey. Students attributes related to gender, age, socioeconomic status, domicile, literacy, physics identity, and test results administered using teachers developed items are also reported in this dataset.
Exploratory analysis on any input data describing the structure and the relationships present in the data. The package automatically select the variable and does related descriptive statistics. Analyzing information value, weight of evidence, custom tables, summary statistics, graphical techniques will be performed for both numeric and categorical predictors.