Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
CMAP/LINCS hdf5 databases and other annotations used for signatureSearch software package.
This package provides a streamlined tool provides a graphical user interface for quality control based signal drift correction (QC-RFSC), integration of data from multi-batch MS-based experiments, and the comprehensive statistical analysis in metabolomics and proteomics.
This package provides a shiny interface to the scanMiR package. The application enables the scanning of transcripts and custom sequences for miRNA binding sites, the visualization of KdModels and binding results, as well as browsing predicted repression data. In addition contains the IndexedFst class for fast indexed reading of large GenomicRanges or data.frames, and some utilities for facilitating scans and identifying enriched miRNA-target pairs.
Suffix Array Kernel Smoothing (see https://academic.oup.com/bioinformatics/article-abstract/35/20/3944/5418797), or SArKS, identifies sequence motifs whose presence correlates with numeric scores (such as differential expression statistics) assigned to the sequences (such as gene promoters). SArKS smooths over sequence similarity, quantified by location within a suffix array based on the full set of input sequences. A second round of smoothing over spatial proximity within sequences reveals multi-motif domains. Discovered motifs can then be merged or extended based on adjacency within MMDs. False positive rates are estimated and controlled by permutation testing.
This package provides a toolbox for sparse contrastive principal component analysis (scPCA) of high-dimensional biological data. scPCA combines the stability and interpretability of sparse PCA with contrastive PCA's ability to disentangle biological signal from unwanted variation through the use of control data. Also implements and extends cPCA.
This package does k-nearest neighbor based statistics and visualizations with flow and mass cytometery data. This gives tSNE maps"fold change" functionality and provides a data quality metric by assessing manifold overlap between fcs files expected to be the same. Other applications using this package include imputation, marker redundancy, and testing the relative information loss of lower dimension embeddings compared to the original manifold.
This package provides a set of tools for working with miRNA affinity models (KdModels), efficiently scanning for miRNA binding sites, and predicting target repression. It supports scanning using miRNA seeds, full miRNA sequences (enabling 3 alignment) and KdModels, and includes the prediction of slicing and TDMD sites. Finally, it includes utility and plotting functions (e.g. for the visual representation of miRNA-target alignment).
standR is an user-friendly R package providing functions to assist conducting good-practice analysis of Nanostring's GeoMX DSP data. All functions in the package are built based on the SpatialExperiment object, allowing integration into various spatial transcriptomics-related packages from Bioconductor. standR allows data inspection, quality control, normalization, batch correction and evaluation with informative visualizations.
The skewr package is a tool for visualizing the output of the Illumina Human Methylation 450k BeadChip to aid in quality control. It creates a panel of nine plots. Six of the plots represent the density of either the methylated intensity or the unmethylated intensity given by one of three subsets of the 485,577 total probes. These subsets include Type I-red, Type I-green, and Type II.The remaining three distributions give the density of the Beta-values for these same three subsets. Each of the nine plots optionally displays the distributions of the "rs" SNP probes and the probes associated with imprinted genes as series of tick marks located above the x-axis.
SNM is a modeling strategy especially designed for normalizing high-throughput genomic data. The underlying premise of our approach is that your data is a function of what we refer to as study-specific variables. These variables are either biological variables that represent the target of the statistical analysis, or adjustment variables that represent factors arising from the experimental or biological setting the data is drawn from. The SNM approach aims to simultaneously model all study-specific variables in order to more accurately characterize the biological or clinical variables of interest.
This data package contains the code used to analyse the single-cell RNA-seq and the bulk ATAC-seq data from the manuscript titled: Single-cell transcriptome analysis reveals coordinated ectopic-gene expression patterns in medullary thymic epithelial cells. This paper was published in Nature Immunology 16,933-941(2015). The data objects provided in this package has been pre-processed: the raw data files can be downloaded from ArrayExpress under the accession identifiers E-MTAB-3346 and E-MTAB-3624. The vignette of this data package provides a documented and reproducible workflow that includes the code that was used to generate each statistic and figure from the manuscript.
This package provides a inferential analysis method for detecting differentially expressed CpG sites in MeDIP-seq data. It uses statistical framework and EM algorithm, to identify differentially expressed CpG sites. The methods on this package are described in the article Methylation-level Inferences and Detection of Differential Methylation with Medip-seq Data by Yan Zhou, Jiadi Zhu, Mingtao Zhao, Baoxue Zhang, Chunfu Jiang and Xiyan Yang (2018, pending publication).
svaNUMT contains functions for detecting NUMT events from structural variant calls. It takes structural variant calls in GRanges of breakend notation and identifies NUMTs by nuclear-mitochondrial breakend junctions. The main function reports candidate NUMTs if there is a pair of valid insertion sites found on the nuclear genome within a certain distance threshold. The candidate NUMTs are reported by events.
SGC is a semi-supervised pipeline for gene clustering in gene co-expression networks. SGC consists of multiple novel steps that enable the computation of highly enriched modules in an unsupervised manner. But unlike all existing frameworks, it further incorporates a novel step that leverages Gene Ontology information in a semi-supervised clustering method that further improves the quality of the computed modules.
Samples large data such that spectral clustering is possible while preserving density information in edge weights. More specifically, given a matrix of coordinates as input, SamSPECTRAL first builds the communities to sample the data points. Then, it builds a graph and after weighting the edges by conductance computation, the graph is passed to a classic spectral clustering algorithm to find the spectral clusters. The last stage of SamSPECTRAL is to combine the spectral clusters. The resulting "connected components" estimate biological cell populations in the data. See the vignette for more details on how to use this package, some illustrations, and simple examples.
Subsampling of high throughput sequencing count data for use in experiment design and analysis.
An example cancer whole genome sequencing data for the SomatiCA package.
Signal-to-Noise applied to Gene Expression Experiments. Signal-to-noise ratios can be used as a proxy for quality of gene expression studies and samples. The SNRs can be calculated on any gene expression data set as long as gene IDs are available, no access to the raw data files is necessary. This allows to flag problematic studies and samples in any public data set.
spatialFDA is a package to calculate spatial statistics metrics. The package takes a SpatialExperiment object and calculates spatial statistics metrics using the package spatstat. Then it compares the resulting functions across samples/conditions using functional additive models as implemented in the package refund. Furthermore, it provides exploratory visualisations using functional principal component analysis, as well implemented in refund.
High-throughput single-cell measurements of DNA methylomes can quantify methylation heterogeneity and uncover its role in gene regulation. However, technical limitations and sparse coverage can preclude this task. scMET is a hierarchical Bayesian model which overcomes sparsity, sharing information across cells and genomic features to robustly quantify genuine biological heterogeneity. scMET can identify highly variable features that drive epigenetic heterogeneity, and perform differential methylation and variability analyses. We illustrate how scMET facilitates the characterization of epigenetically distinct cell populations and how it enables the formulation of novel hypotheses on the epigenetic regulation of gene expression.
Inspect interactively the spatially-resolved transcriptomics data from the 10x Genomics Visium platform as well as data from the Maynard, Collado-Torres et al, Nature Neuroscience, 2021 project analyzed by Lieber Institute for Brain Development (LIBD) researchers and collaborators.
This Package utilizes a Semi-parametric Differential Abundance/expression analysis (SDA) method for metabolomics and proteomics data from mass spectrometry as well as single-cell RNA sequencing data. SDA is able to robustly handle non-normally distributed data and provides a clear quantification of the effect size.
SPsimSeq uses a specially designed exponential family for density estimation to constructs the distribution of gene expression levels from a given real RNA sequencing data (single-cell or bulk), and subsequently simulates a new dataset from the estimated marginal distributions using Gaussian-copulas to retain the dependence between genes. It allows simulation of multiple groups and batches with any required sample size and library size.
This package provides a tool to search and download a collection of publicly available single cell ATAC-seq datasets and their metadata. scATAC-Explorer aims to act as a single point of entry for users looking to study single cell ATAC-seq data. Users can quickly search available datasets using the metadata table and download datasets of interest for immediate analysis within R.