Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
High level management of widgets, windows and other graphical resources.
This package provides functions to extract citation data from Google Scholar. Convenience functions are also provided for comparing multiple scholars and predicting future h-index values.
Universal and robust algorithm for solving the total alkalinity-pH equation presented in G. Munhoven (2013) <doi:10.5194/gmd-6-1367-2013> and G. Munhoven (2021) <doi:10.5194/gmd-2020-447>. The total alkalinity-pH equation relates total alkalinity and pH for a given set of acid-base concentrations in a given water sample, among which carbonic acid. This package is particularly useful in marine chemistry involving dissolved inorganic carbon. Original package in Fortran can be found at <doi:10.5281/zenodo.4328965>.
This package provides functions for tabulating and summarizing categorical, multiple response, ordinal, and continuous variables in R data frames. Makes it easy to create clear, structured summary tables, so you spend less time wrangling data and more time interpreting it.
Extract the signed backbones of intrinsically dense weighted networks based on the significance filter and vigor filter as described in the following paper. Please cite it if you find this software useful in your work. Furkan Gursoy and Bertan Badur. "Extracting the signed backbone of intrinsically dense weighted networks." Journal of Complex Networks. <arXiv:2012.05216>.
Calculates parameters of the seawater carbonate system and assists the design of ocean acidification perturbation experiments.
This package provides a systematic biology tool was developed to prioritize cancer subtype-specific drugs by integrating genetic perturbation, drug action, biological pathway, and cancer subtype. The capabilities of this tool include inferring patient-specific subpathway activity profiles in the context of gene expression profiles with subtype labels, calculating differentially expressed subpathways based on cultured human cells treated with drugs in the cMap (connectivity map) database, prioritizing cancer subtype specific drugs according to drug-disease reverse association score based on subpathway, and visualization of results (Castelo (2013) <doi:10.1186/1471-2105-14-7>; Han et al (2019) <doi:10.1093/bioinformatics/btz894>; Lamb and Justin (2006) <doi:10.1126/science.1132939>). Please cite using <doi:10.1093/bioinformatics/btab011>.
This is a compendium of C++ routines useful for Bayesian statistics. We steal other people's C++ code, repurpose it, and export it so developers of R packages can use it in their C++ code. We actually don't steal anything, or claim that Thomas Bayes did, but copy code that is compatible with our GPL 3 licence, fully acknowledging the authorship of the original code.
This package provides functions that simplify calls to the Skilljar API. See <https://api.skilljar.com/docs/> for documentation on the Skilljar API. This package is not supported by Skilljar'.
Simulation methods for the Fisher Bingham distribution on the unit sphere, the matrix Bingham distribution on a Grassmann manifold, the matrix Fisher distribution on SO(3), and the bivariate von Mises sine model on the torus. The methods use an acceptance/rejection simulation algorithm for the Bingham distribution and are described fully by Kent, Ganeiber and Mardia (2018) <doi:10.1080/10618600.2017.1390468>. These methods supersede earlier MCMC simulation methods and are more general than earlier simulation methods. The methods can be slower in specific situations where there are existing non-MCMC simulation methods (see Section 8 of Kent, Ganeiber and Mardia (2018) <doi:10.1080/10618600.2017.1390468> for further details).
This package provides functions for the evaluation of surrogate endpoints when both the surrogate and the true endpoint are failure time variables. The approaches implemented are: (1) the two-step approach (Burzykowski et al, 2001) <DOI:10.1111/1467-9876.00244> with a copula model (Clayton, Plackett, Hougaard) at the first step and either a linear regression of log-hazard ratios at the second step (either adjusted or not for measurement error); (2) mixed proportional hazard models estimated via mixed Poisson GLM (Rotolo et al, 2017 <DOI:10.1177/0962280217718582>).
This package provides functions for the collection of 3D points and curves using a stereo camera setup.
Analyze public-use micro data from the Survey of Consumer Finances. Provides tools to download prepared data files, construct replicate-weighted multiply imputed survey designs, compute descriptive statistics and model estimates, and produce plots and tables. Methods follow design-based inference for complex surveys and pooling across multiple imputations. See the package website and the code book for background.
This package performs canonical correlation for survey data, including multiple tests of significance for secondary canonical correlations. A key feature of this package is that it incorporates survey data structure directly in a novel test of significance via a sequence of simple linear regression models on the canonical variates. See reference - Cruz-Cano, Cohen, and Mead-Morse (2024) "Canonical Correlation Analysis of Survey data: the SurveyCC R package" The R Journal under review.
This package provides functions for fitting discrete distribution models to count data. Included are the Poisson, the negative binomial, the Poisson-inverse gaussian and, most importantly, a new implementation of the Poisson-beta distribution (density, distribution and quantile functions, and random number generator) together with a needed new implementation of Kummer's function (also: confluent hypergeometric function of the first kind). Three different implementations of the Gillespie algorithm allow data simulation based on the basic, switching or bursting mRNA generating processes. Moreover, likelihood functions for four variants of each of the three aforementioned distributions are also available. The variants include one population and two population mixtures, both with and without zero-inflation. The package depends on the MPFR libraries (<https://www.mpfr.org/>) which need to be installed separately (see description at <https://github.com/fuchslab/scModels>). This package is supplement to the paper "A mechanistic model for the negative binomial distribution of single-cell mRNA counts" by Lisa Amrhein, Kumar Harsha and Christiane Fuchs (2019) <doi:10.1101/657619> available on bioRxiv.
Basic statistical methods with some modifications for the course Statistical Methods at Federal University of Bahia (Brazil). All methods in this packages are explained in the text book of Montgomery and Runger (2010) <ISBN: 978-1-119-74635-5>.
This package provides a simple interface to developing complex data pipelines which can be executed in a single call. sewage makes it easy to test, debug, and share data pipelines through it's interface and visualizations.
An implementation of the stratification index proposed by Zhou (2012) <DOI:10.1177/0081175012452207>. The package provides two functions, srank, which returns stratum-specific information, including population share and average percentile rank; and strat, which returns the stratification index and its approximate standard error. When a grouping factor is specified, strat also provides a detailed decomposition of the overall stratification into between-group and within-group components.
For surface energy models and estimation of solar positions and components with varying topography, time and locations. The functions calculate solar top-of-atmosphere, open, diffuse and direct components, atmospheric transmittance and diffuse factors, day length, sunrise and sunset, solar azimuth, zenith, altitude, incidence, and hour angles, earth declination angle, equation of time, and solar constant. Details about the methods and equations are explained in Seyednasrollah, Bijan, Mukesh Kumar, and Timothy E. Link. On the role of vegetation density on net snow cover radiation at the forest floor. Journal of Geophysical Research: Atmospheres 118.15 (2013): 8359-8374, <doi:10.1002/jgrd.50575>.
This package provides significance controlled variable selection algorithms with different directions (forward, backward, stepwise) based on diverse criteria (AIC, BIC, adjusted r-square, PRESS, or p-value). The algorithm selects a final model with only significant variables defined as those with significant p-values after multiple testing correction such as Bonferroni, False Discovery Rate, etc. See Zambom and Kim (2018) <doi:10.1002/sta4.210>.
Data on standard load profiles from the German Association of Energy and Water Industries (BDEW Bundesverband der Energie- und Wasserwirtschaft e.V.) in a tidy format. The data and methodology are described in VDEW (1999), "Repräsentative VDEW-Lastprofile", <https://www.bdew.de/media/documents/1999_Repraesentative-VDEW-Lastprofile.pdf>. The package also offers an interface for generating a standard load profile over a user-defined period. For the algorithm, see VDEW (2000), "Anwendung der Repräsentativen VDEW-Lastprofile step-by-step", <https://www.bdew.de/media/documents/2000131_Anwendung-repraesentativen_Lastprofile-Step-by-step.pdf>.
This package implements a generative model that uses a spike-and-slab like prior distribution obtained by multiplying a deterministic binary vector. Such a model allows an EM algorithm, optimizing a type-II log-likelihood.
Calculates the power and sample size for Cochran-Mantel-Haenszel tests. There are also several helper functions for working with probability, odds, relative risk, and odds ratio values.
This package provides small area estimation for count data type and gives option whether to use covariates in the estimation or not. By implementing Empirical Bayes (EB) Poisson-Gamma model, each function returns EB estimators and mean squared error (MSE) estimators for each area. The EB estimators without covariates are obtained using the model proposed by Clayton & Kaldor (1987) <doi:10.2307/2532003>, the EB estimators with covariates are obtained using the model proposed by Wakefield (2006) <doi:10.1093/biostatistics/kxl008> and the MSE estimators are obtained using Jackknife method by Jiang et. al. (2002) <doi:10.1214/aos/1043351257>.