Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Bayesian variable selection, model choice, and regularized estimation for (spatial) generalized additive mixed regression models via stochastic search variable selection with spike-and-slab priors.
In base R, object attributes are lost when objects are modified by common data operations such as subset, filter, slice, append, extract etc. This packages allows objects to be marked as sticky and have attributes persisted during these operations or when inserted into or extracted from list-like or table-like objects.
Allows users to calculate pairwise Nei's Genetic Distances (Nei 1972), pairwise Fixation Indexes (Fst) (Weir & Cockerham 1984) and also Genomic Relationship matrixes following Yang et al. (2010) in mixed and single ploidy populations. Bootstrapping across loci is implemented during Fst calculation to generate confidence intervals and p-values around pairwise Fst values. StAMPP utilises SNP genotype data of any ploidy level (with the ability to handle missing data) and is coded to utilise multithreading where available to allow efficient analysis of large datasets. StAMPP is able to handle genotype data from genlight objects allowing integration with other packages such adegenet. Please refer to LW Pembleton, NOI Cogan & JW Forster, 2013, Molecular Ecology Resources, 13(5), 946-952. <doi:10.1111/1755-0998.12129> for the appropriate citation and user manual. Thank you in advance.
Allows shiny developers to incorporate UI elements based on Google's Material design. See <https://material.io/guidelines/> for more information.
This package provides a small set of functions wrapping up the call stack and command line inspection needed to determine a running script's filename from within the script itself.
Compute various common mean squared predictive error (MSPE) estimators, as well as several existing variance component predictors as a byproduct, for FH model (Fay and Herriot, 1979) and NER model (Battese et al., 1988) in small area estimation.
M-estimators of location and shape following the power family (Frahm, Nordhausen, Oja (2020) <doi:10.1016/j.jmva.2019.104569>) are provided in the case of complete data and also when observations have missing values together with functions aiding their visualization.
It is a framework to fit semiparametric regression estimators for the total parameter of a finite population when the interest variable is asymmetric distributed. The main references for this package are Sarndal C.E., Swensson B., and Wretman J. (2003,ISBN: 978-0-387-40620-6, "Model Assisted Survey Sampling." Springer-Verlag) Cardozo C.A, Paula G.A. and Vanegas L.H. (2022) "Generalized log-gamma additive partial linear mdoels with P-spline smoothing", Statistical Papers. Cardozo C.A and Alonso-Malaver C.E. (2022). "Semi-parametric model assisted estimation in finite populations." In preparation.
Augmenting a matched data set by generating multiple stochastic, matched samples from the data using a multi-dimensional histogram constructed from dropping the input matched data into a multi-dimensional grid built on the full data set. The resulting stochastic, matched sets will likely provide a collectively higher coverage of the full data set compared to the single matched set. Each stochastic match is without duplication, thus allowing downstream validation techniques such as cross-validation to be applied to each set without concern for overfitting.
This package provides a-priori, post-hoc, and compromise power-analyses for structural equation models (SEM).
Isolation forest is anomaly detection method introduced by the paper Isolation based Anomaly Detection (Liu, Ting and Zhou <doi:10.1145/2133360.2133363>).
It is a single cell active pathway analysis tool based on the graph neural network (F. Scarselli (2009) <doi:10.1109/TNN.2008.2005605>; Thomas N. Kipf (2017) <arXiv:1609.02907v4>) to construct the gene-cell association network, infer pathway activity scores from different single cell modalities data, integrate multiple modality data on the same cells into one pathway activity score matrix, identify cell phenotype activated gene modules and parse association networks of gene modules under multiple cell phenotype. In addition, abundant visualization programs are provided to display the results.
Empirical likelihood methods for asymptotically efficient estimation of models based on conditional or unconditional moment restrictions; see Kitamura, Tripathi & Ahn (2004) <doi:10.1111/j.1468-0262.2004.00550.x> and Owen (2013) <doi:10.1002/cjs.11183>. Kernel-based non-parametric methods for density/regression estimation and numerical routines for empirical likelihood maximisation are implemented in Rcpp for speed.
Function for the GUI API to interact with external IDE/code editors.
Converts the dates to different SAS date formats. In SAS dates are a special case of numeric values. Each day is assigned a specific numeric value, starting from January 1, 1960. This date is assigned the date value 0, and the next date has a date value of 1 and so on. The previous days to this date are represented by -1 , -2 and so on. With this approach, SAS can represent any date in the future or any date in the past. There are many date formats used in SAS to represent date-time. Here, we try to develop functions which will convert the date to different SAS date formats.
Sequential Poisson sampling is a variation of Poisson sampling for drawing probability-proportional-to-size samples with a given number of units, and is commonly used for price-index surveys. This package gives functions to draw stratified sequential Poisson samples according to the method by Ohlsson (1998, ISSN:0282-423X), as well as other order sample designs by Rosén (1997, <doi:10.1016/S0378-3758(96)00186-3>), and generate approximate bootstrap replicate weights according to the generalized bootstrap method by Beaumont and Patak (2012, <doi:10.1111/j.1751-5823.2011.00166.x>).
This package provides a pipeline for the comparative analysis of collective movement data (e.g. fish schools, bird flocks, baboon troops) by processing 2-dimensional positional data (x,y,t) from GPS trackers or computer vision tracking systems, discretizing events of collective motion, calculating a set of established metrics that characterize each event, and placing the events in a multi-dimensional swarm space constructed from these metrics. The swarm space concept, the metrics and data sets included are described in: Papadopoulou Marina, Furtbauer Ines, O'Bryan Lisa R., Garnier Simon, Georgopoulou Dimitra G., Bracken Anna M., Christensen Charlotte and King Andrew J. (2023) <doi:10.1098/rstb.2022.0068>.
Estimates sparse regression models (i.e., with few non-zero coefficients) in high-dimensional multi-task learning and transfer learning settings, as proposed by Rauschenberger et al. (2025) <https://orbilu.uni.lu/handle/10993/63425>.
Permits determination of a set of optimal dynamic treatment regimes and sample size for a SMART design in the Bayesian setting with binary outcomes. Please see Artman (2020) <arXiv:2008.02341>.
This package provides a function sfc() to compute the substance flow with the input files --- "data" and "model". If sample.size is set more than 1, uncertainty analysis will be executed while the distributions and parameters are supplied in the file "data".
An easy to use implementation of routine structural missing data diagnostics with functions to visualize the proportions of missing observations, investigate missing data patterns and conduct various empirical missing data diagnostic tests. Reference: Weberpals J, Raman SR, Shaw PA, Lee H, Hammill BG, Toh S, Connolly JG, Dandreo KJ, Tian F, Liu W, Li J, Hernández-Muñoz JJ, Glynn RJ, Desai RJ. smdi: an R package to perform structural missing data investigations on partially observed confounders in real-world evidence studies. JAMIA Open. 2024 Jan 31;7(1):ooae008. <doi:10.1093/jamiaopen/ooae008>.
Based on the structure of the SPSS version of the Swiss Household Panel (SHP) data, provides a function seqFromWaves() that seeks the data of variables specified by the user in each of the wave files and collects them as sequences. The function also matches the sequences with variables from other files such as the master files of persons (MP) and households (MH), and social origins (SO). It can also match with activity calendar data (CA).
This package performs two-sample comparisons based on average hazard with survival weight (AHSW) or general censoring-free incidence rate (CFIR) proposed by Uno and Horiguchi (2023) <doi:10.1002/sim.9651>.
This package provides a statistical learning method to simultaneously predict a range of target phenotypes using codified and natural language processing (NLP)-derived Electronic Health Record (EHR) data. See Ahuja et al (2020) JAMIA <doi:10.1093/jamia/ocaa079> for details.