Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Interactive variogram diagnostics.
Allow R users to interact with the Canvas Learning Management System (LMS) API (see <https://canvas.instructure.com/doc/api/all_resources.html> for details). It provides a set of functions to access and manipulate course data, assignments, grades, users, and other resources available through the Canvas API.
This package provides a way of visualizing collections of time series and, optionally their future values, forecasts for their future values and prediction intervals for the forecasts. A web-based GUI can be used to display the information in a collection of time series.
Perform the analysis of the World Health Organization (WHO) Pharmacovigilance database VigiBase (Extract Case Level version), <https://who-umc.org/> e.g., load data, perform data management, disproportionality analysis, and descriptive statistics. Intended for pharmacovigilance routine use or studies. This package is NOT supported nor reflect the opinion of the WHO, or the Uppsala Monitoring Centre. Disproportionality methods are described by Norén et al (2013) <doi:10.1177/0962280211403604>.
Utilizes multiple variable selection methods to estimate Average Treatment Effect.
Non-Domestic VAERS vaccine data for 01/01/2016 - 06/14/2016. If you want to explore the full VAERS data for 1990 - Present (data, symptoms, and vaccines), then check out the vaersND package from the URL below. The URL and BugReports below correspond to the vaersND package, of which vaersNDvax is a small subset (2016 only). vaersND is not hosted on CRAN due to the large size of the data set. To install the Suggested vaers and vaersND packages, use the following R code: devtools::install_git("https://gitlab.com/iembry/vaers.git", build_vignettes = TRUE) and devtools::install_git("https://gitlab.com/iembry/vaersND.git", build_vignettes = TRUE)'. "VAERS is a national vaccine safety surveillance program co-sponsored by the US Centers for Disease Control and Prevention (CDC) and the US Food and Drug Administration (FDA). VAERS is a post-marketing safety surveillance program, collecting information about adverse events (possible side effects) that occur after the administration of vaccines licensed for use in the United States." For more information about the data, visit <https://vaers.hhs.gov/index>. For information about vaccination/immunization hazards, visit <http://www.questionuniverse.com/rethink.html/#vaccine>.
This package provides a Shiny application for the interactive visualisation and analysis of networks that also provides a web interface for collecting social media data using vosonSML'.
Trading Strategies for high Option Volatility environment are represented here through their Graphs. The graphic indicators, strategies, calculations, functions and all the discussions are for academic, research, and educational purposes only and should not be construed as investment advice and come with absolutely no Liability. Guy Cohen (â The Bible of Options Strategies (2nd ed.)â , 2015, ISBN: 9780133964028). Zura Kakushadze, Juan A. Serur (â 151 Trading Strategiesâ , 2018, ISBN: 9783030027919). John C. Hull (â Options, Futures, and Other Derivatives (11th ed.)â , 2022, ISBN: 9780136939979).
Realization of published methods to analyze visual field (VF) progression. Introduction to the plotting methods (designed by author TE) for VF output visualization. A sample dataset for two eyes, each with 10 follow-ups is included. The VF analysis methods could be found in -- Musch et al. (1999) <doi:10.1016/S0161-6420(99)90147-1>, Nouri-Mahdavi et at. (2012) <doi:10.1167/iovs.11-9021>, Schell et at. (2014) <doi:10.1016/j.ophtha.2014.02.021>, Aptel et al. (2015) <doi:10.1111/aos.12788>.
This package provides fitting routines for four versions of the Vitality family of mortality models.
This package provides access to the Vagalume API <https://api.vagalume.com.br>. The data extracted is basically lyrics of songs and information about artists/bands.
Traces information spread through interactions between features, utilising information theory measures and a higher-order generalisation of the concept of widest paths in graphs. In particular, vistla can be used to better understand the results of high-throughput biomedical experiments, by organising the effects of the investigated intervention in a tree-like hierarchy from direct to indirect ones, following the plausible information relay circuits. Due to its higher-order nature, vistla can handle multi-modality and assign multiple roles to a single feature.
This package provides a nonparametric method to estimate Toeplitz covariance matrices from a sample of n independently and identically distributed p-dimensional vectors with mean zero. The data is preprocessed with the discrete cosine matrix and a variance stabilization transformation to obtain an approximate Gaussian regression setting for the log-spectral density function. Estimates of the spectral density function and the inverse of the covariance matrix are provided as well. Functions for simulating data and a protein data example are included. For details see (Klockmann, Krivobokova; 2023), <arXiv:2303.10018>.
Estimating the disparity between two groups based on the extended model of the Peters-Belson (PB) method. Our model is the first work on the longitudinal data, and also can set a varying variable to find the complicated association between other variables and the varying variable. Our work is an extension of the Peters-Belson method which was originally published in Peters (1941)<doi:10.1080/00220671.1941.10881036> and Belson (1956)<doi:10.2307/2985420>.
Graphs the pdf or pmf and highlights what area or probability is present in user defined locations. Visualize is able to provide lower tail, bounded, upper tail, and two tail calculations. Supports strict and equal to inequalities. Also provided on the graph is the mean and variance of the distribution.
This package provides fast spectral estimation of latent factors in random dot product graphs using the vsp estimator. Under mild assumptions, the vsp estimator is consistent for (degree-corrected) stochastic blockmodels, (degree-corrected) mixed-membership stochastic blockmodels, and degree-corrected overlapping stochastic blockmodels.
Compared with the similar graph embedding method such as Laplacian Eigenmaps, Vicus can exploit more local structures of graph data. For the details of the methods, see the reference section of GitHub README.md <https://github.com/rikenbit/Vicus>.
Valid Improved Sparsity A-Learning (VISA) provides a new method for selecting important variables involved in optimal treatment regime from a multiply robust perspective. The VISA estimator achieves its success by borrowing the strengths of both model averaging (ARM, Yuhong Yang, 2001) <doi:10.1198/016214501753168262> and variable selection (PAL, Chengchun Shi, Ailin Fan, Rui Song and Wenbin Lu, 2018) <doi:10.1214/17-AOS1570>. The package is an implementation of Zishu Zhan and Jingxiao Zhang. (2022+).
Simulates and evaluates stochastic scenarios of death and lapse events in life reinsurance contracts with profit commissions. The methodology builds on materials published by the Institute of Actuaries of Japan <https://www.actuaries.jp/examin/textbook/pdf/modeling.pdf>. A paper describing the detailed algorithms will be published by the author within a few months after the initial release of this package.
This package produces violin plots with optional nonparametric (Mann-Whitney test) and parametric (Tukey's honest significant difference) mean comparison and linear regression. This package aims to be a simple and quick visualization tool for comparing means and assessing trends of categorical factors.
This package implements the Variable importance Explainable Elastic Shape Analysis pipeline for explainable machine learning with functional data inputs. Converts training and testing data functional inputs to elastic shape analysis principal components that account for vertical and/or horizontal variability. Computes feature importance to identify important principal components and visualizes variability captured by functional principal components. See Goode et al. (2025) <doi:10.48550/arXiv.2501.07602> for technical details about the methodology.
Create adjacency matrices of vocalisation graphs from dataframes containing sequences of speech and silence intervals, transforming these matrices into Markov diagrams, and generating datasets for classification of these diagrams by flattening them and adding global properties (functionals) etc. Vocalisation diagrams date back to early work in psychiatry (Jaffe and Feldstein, 1970) and social psychology (Dabbs and Ruback, 1987) but have only recently been employed as a data representation method for machine learning tasks including meeting segmentation (Luz, 2012) <doi:10.1145/2328967.2328970> and classification (Luz, 2013) <doi:10.1145/2522848.2533788>.
Forecasting univariate time series with Variational Mode Decomposition (VMD) based time delay neural network models.For method details see Konstantin, D.and Dominique, Z. (2014). <doi:10.1109/TSP.2013.2288675>.
This is a sparklyr extension integrating VariantSpark and R. VariantSpark is a framework based on scala and spark to analyze genome datasets, see <https://bioinformatics.csiro.au/>. It was tested on datasets with 3000 samples each one containing 80 million features in either unsupervised clustering approaches and supervised applications, like classification and regression. The genome datasets are usually writing in VCF, a specific text file format used in bioinformatics for storing gene sequence variations. So, VariantSpark is a great tool for genome research, because it is able to read VCF files, run analyses and return the output in a spark data frame.