Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package performs inference of several model-free group contrast measures, which include difference/ratio of cumulative incidence rates at given time points, quantiles, and restricted mean survival times (RMST). Two kinds of covariate adjustment procedures (i.e., regression and augmentation) for inference of the metrics based on RMST are also included.
Interactively play a game of sokoban ,which has nine game levels.Sokoban is a type of transport puzzle, in which the player pushes boxes or crates around in a warehouse, trying to get them to storage locations.
Takea Semantic Structure Analysis (TSSA) and Sakai Sequential Relation Analysis (SSRA) for polytomous items. Package includes functions for generating a sequential relation table and a treegram to visualize the sequential relations between pairs of items.
The President of the United States is constitutionally obligated to provide a report known as the State of the Union'. The report summarizes the current challenges facing the country and the president's upcoming legislative agenda. While historically the State of the Union was often a written document, in recent decades it has always taken the form of an oral address to a joint session of the United States Congress. This package provides the raw text from every such address with the intention of being used for meaningful examples of text analysis in R. The corpus is well suited to the task as it is historically important, includes material intended to be read and material intended to be spoken, and it falls in the public domain. As the corpus spans over two centuries it is also a good test of how well various methods hold up to the idiosyncrasies of historical texts. Associated data about each address, such as the year, president, party, and format, are also included.
This package provides methods for sensory discrimination methods; duotrio, tetrad, triangle, 2-AFC, 3-AFC, A-not A, same-different, 2-AC and degree-of-difference. This enables the calculation of d-primes, standard errors of d-primes, sample size and power computations, and comparisons of different d-primes. Methods for profile likelihood confidence intervals and plotting are included. Most methods are described in Brockhoff, P.B. and Christensen, R.H.B. (2010) <doi:10.1016/j.foodqual.2009.04.003>.
This package provides several functions for area level of small area estimation using hierarchical Bayesian (HB) methods with several univariate distributions for variables of interest. The dataset that is used in every function is generated accordingly in the Example. The rjags package is employed to obtain parameter estimates. Model-based estimators involve the HB estimators which include the mean and the variation of mean. For the reference, see Rao and Molina (2015) <doi:10.1002/9781118735855>.
Set of tools to import, summarize, wrangle, and visualize data. These functions were originally written based on the needs of the various synthesis working groups that were supported by the National Center for Ecological Analysis and Synthesis (NCEAS). These tools are meant to be useful inside and outside of the context for which they were designed.
Imbalanced training datasets impede many popular classifiers. To balance training data, a combination of oversampling minority classes and undersampling majority classes is useful. This package implements the SCUT (SMOTE and Cluster-based Undersampling Technique) algorithm as described in Agrawal et. al. (2015) <doi:10.5220/0005595502260234>. Their paper uses model-based clustering and synthetic oversampling to balance multiclass training datasets, although other resampling methods are provided in this package.
An open-source R package for structuring, maintaining, running, and debugging statistical simulations on both local and cluster-based computing environments.See full documentation at <https://avi-kenny.github.io/SimEngine/>.
RegLog system provides a set of shiny modules to handle register procedure for your users, alongside with login, edit credentials and password reset functionality. It provides support for popular SQL databases and optionally googlesheet-based database for easy setup. For email sending it provides support for emayili and gmailr backends. Architecture makes customizing usability pretty straightforward. The authentication system created with shiny.reglog is designed to be optional: user don't need to be logged-in to access your application, but when logged-in the user data can be used to read from and write to relational databases.
Fast single trait Genome Wide Association Studies (GWAS) following the method described in Kang et al. (2010), <doi:10.1038/ng.548>. One of a series of statistical genetic packages for streamlining the analysis of typical plant breeding experiments developed by Biometris.
Spatial versions of Regression Discontinuity Designs (RDDs) are becoming increasingly popular as tools for causal inference. However, conducting state-of-the-art analyses often involves tedious and time-consuming steps. This package offers comprehensive functionalities for executing all required spatial and econometric tasks in a streamlined manner. Moreover, it equips researchers with tools for performing essential placebo and balancing checks comprehensively. The fact that researchers do not have to rely on APIs of external GIS software ensures replicability and raises the standard for spatial RDDs.
This package provides a function that behaves nearly as base::source() but implements a caching mechanism on disk, project based. It allows to quasi source() R scripts that gather data but can fail or consume to much time to respond even if nothing new is expected. It comes with tools to check and execute on demand or when cache is invalid the script.
This package implements the synthetic control group method for comparative case studies as described in Abadie and Gardeazabal (2003) and Abadie, Diamond, and Hainmueller (2010, 2011, 2014). The synthetic control method allows for effect estimation in settings where a single unit (a state, country, firm, etc.) is exposed to an event or intervention. It provides a data-driven procedure to construct synthetic control units based on a weighted combination of comparison units that approximates the characteristics of the unit that is exposed to the intervention. A combination of comparison units often provides a better comparison for the unit exposed to the intervention than any comparison unit alone.
Interface to sigma.js graph visualization library including animations, plugins and shiny proxies.
The overall performance of soil ecosystem services and productivity greatly relies on soil health, making it a crucial indicator. The evaluation of soil physical, chemical, and biological parameters is necessary to determine the overall soil quality index. In our package, three commonly used methods, including linear scoring, regression-based, and principal component-based soil quality indexing, are employed to calculate the soil quality index. This package has been developed using concept of Bastida et al. (2008) and Doran and Parkin (1994) <doi:10.1016/j.geoderma.2008.08.007> <doi:10.2136/sssaspecpub35.c1>.
Newly developed methods for the estimation of several probabilities in an illness-death model. The package can be used to obtain nonparametric and semiparametric estimates for: transition probabilities, occupation probabilities, cumulative incidence function and the sojourn time distributions. Additionally, it is possible to fit proportional hazards regression models in each transition of the Illness-Death Model. Several auxiliary functions are also provided which can be used for marginal estimation of the survival functions.
User-friendly framework that enables the training and the evaluation of species distribution models (SDMs). The package implements functions for data driven variable selection and model tuning and includes numerous utilities to display the results. All the functions used to select variables or to tune model hyperparameters have an interactive real-time chart displayed in the RStudio viewer pane during their execution.
This package provides convenience functions to replace hyphen-minuses (ASCII 45) with proper minus signs (Unicode character 2212). The true minus matches the plus symbol in width, line thickness, and height above the baseline. It was designed for mathematics, looks better in presentation, and is understood properly by screen readers.
Fits time trend models for routine disease surveillance tasks and returns probability distributions for a variety of quantities of interest, including age-standardized rates, period and cumulative percent change, and measures of health inequality. The models are appropriate for count data such as disease incidence and mortality data, employing a Poisson or binomial likelihood and the first-difference (random-walk) prior for unknown risk. Optionally add a covariance matrix for multiple, correlated time series models. Inference is completed using Markov chain Monte Carlo via the Stan modeling language. References: Donegan, Hughes, and Lee (2022) <doi:10.2196/34589>; Stan Development Team (2021) <https://mc-stan.org>; Theil (1972, ISBN:0-444-10378-3).
This package provides functions for statistical analysis of point processes.
Analysis of multi environment data of plant breeding experiments following the analyses described in Malosetti, Ribaut, and van Eeuwijk (2013), <doi:10.3389/fphys.2013.00044>. One of a series of statistical genetic packages for streamlining the analysis of typical plant breeding experiments developed by Biometris. Some functions have been created to be used in conjunction with the R package asreml for the ASReml software, which can be obtained upon purchase from VSN international (<https://vsni.co.uk/software/asreml-r/>).
This package provides a Package for selecting variables for the joint modeling of mean and dispersion (including models for mixture experiments) based on hypothesis testing and the quality of model's fit. In each iteration of the selection process, a criterion for checking the goodness of fit is used as a filter for choosing the terms that will be evaluated by a hypothesis test. Pinto & Pereira (2021) <arXiv:2109.07978>.
Catch advice for data-limited vertebrate and invertebrate fisheries managed by harvest slot limits using the SlotLim harvest control rule. The package accompanies the manuscript "SlotLim: catch advice for data-limited vertebrate and invertebrate fisheries managed by harvest slot limits" (Pritchard et al., in prep). Minimum data requirements: at least two consecutive years of catch data, lengthâ frequency distributions, and biomass or abundance indices (all from fishery-dependent sources); species-specific growth rate parameters (either von Bertalanffy, Gompertz, or Schnute); and either the natural mortality rate ('M') or the maximum observed age ('tmax'), from which M is estimated. The following functions have optional plotting capabilities that require ggplot2 installed: prop_target(), TBA(), SAM(), catch_advice(), catch_adjust(), and slotlim_once().