Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions for computing and visualizing generalized canonical discriminant analyses and canonical correlation analysis for a multivariate linear model. Traditional canonical discriminant analysis is restricted to a one-way MANOVA design and is equivalent to canonical correlation analysis between a set of quantitative response variables and a set of dummy variables coded from the factor variable. The candisc package generalizes this to higher-way MANOVA designs for all factors in a multivariate linear model, computing canonical scores and vectors for each term. The graphic functions provide low-rank (1D, 2D, 3D) visualizations of terms in an mlm via the plot.candisc and heplot.candisc methods. Related plots are now provided for canonical correlation analysis when all predictors are quantitative. Methods for linear discriminant analysis are now included.
Additive copula regression for regression problems with binary outcome via gradient boosting [Brant, Hobæk Haff (2022); <arXiv:2208.04669>]. The fitting process includes a specialised model selection algorithm for each component, where each component is found (by greedy optimisation) among all the D-vines with only Gaussian pair-copulas of a fixed dimension, as specified by the user. When the variables and structure have been selected, the algorithm then re-fits the component where the pair-copula distributions can be different from Gaussian, if specified.
This package provides functions to test and compare causal models using Confirmatory Path Analysis.
This package provides tools for measuring the compositionality of signalling systems (in particular the information-theoretic measure due to Spike (2016) <http://hdl.handle.net/1842/25930> and the Mantel test for distance matrix correlation (after Dietz 1983) <doi:10.1093/sysbio/32.1.21>), functions for computing string and meaning distance matrices as well as an implementation of the Page test for monotonicity of ranks (Page 1963) <doi:10.1080/01621459.1963.10500843> with exact p-values up to k = 22.
Method for identifying the instar of Curculionid larvae from the observed distribution of the headcapsule size of mature larvae.
This package provides tools for extracting word and phrase frequencies from the Child Language Data Exchange System (CHILDES) database via the childesr API. Supports type-level word counts, token-mode searches with simple wildcard patterns and part-of-speech filters, optional stemming, and Zipf-scaled frequencies. Provides normalization per number of tokens or utterances, speaker-role breakdowns, dataset summaries, and export to Excel workbooks for reproducible child language research. The CHILDES database is maintained at <https://talkbank.org/childes/>.
Utilities to make your clinical collaborations easier if not fun. It contains functions for designing studies such as Simon 2-stage and group sequential designs and for data analysis such as Jonckheere-Terpstra test and estimating survival quantiles.
Evaluates the stability and significance of clusters on igraph graphs. Supports weighted and unweighted graphs. Implements the cluster evaluation methods defined by Arratia A, Renedo M (2021) <doi:10.7717/peerj-cs.600>. Also includes an implementation of the Reduced Mutual Information introduced by Newman et al. (2020) <doi:10.1103/PhysRevE.101.042304>.
To calculate the AQI (Air Quality Index) from pollutant concentration data. O3, PM2.5, PM10, CO, SO2, and NO2 are available currently. The method can be referenced at Environmental Protection Agency, United States as follows: EPA (2016) <https://www3.epa.gov/airnow/aqi-technical-assistance-document-may2016.pdf>.
Finds single- and two-arm designs using stochastic curtailment, as described by Law et al. (2022) <doi:10.1080/10543406.2021.2009498> and Law et al. (2021) <doi:10.1002/pst.2067> respectively. Designs can be single-stage or multi-stage. Non-stochastic curtailment is possible as a special case. Desired error-rates, maximum sample size and lower and upper anticipated response rates are inputted and suitable designs are returned with operating characteristics. Stopping boundaries and visualisations are also available. The package can find designs using other approaches, for example designs by Simon (1989) <doi:10.1016/0197-2456(89)90015-9> and Mander and Thompson (2010) <doi:10.1016/j.cct.2010.07.008>. Other features: compare and visualise designs using a weighted sum of expected sample sizes under the null and alternative hypotheses and maximum sample size; visualise any binary outcome design.
We aim to deal with the average treatment effect (ATE), where the data are subject to high-dimensionality and measurement error. This package primarily contains two functions, which are used to generate artificial data and estimate ATE with high-dimensional and error-prone data accommodated.
This package provides a suite of routines for Clifford algebras, using the Map class of the Standard Template Library. Canonical reference: Hestenes (1987, ISBN 90-277-1673-0, "Clifford algebra to geometric calculus"). Special cases including Lorentz transforms, quaternion multiplication, and Grassmann algebra, are discussed. Vignettes presenting conformal geometric algebra, quaternions and split quaternions, dual numbers, and Lorentz transforms are included. The package follows disordR discipline.
Compare two classifications or clustering solutions that may or may not have the same number of classes, and that might have hard or soft (fuzzy, probabilistic) membership. Calculate various metrics to assess how the clusters compare to each other. The calculations are simple, but provide a handy tool for users unfamiliar with matrix multiplication. This package is not geared towards traditional accuracy assessment for classification/ mapping applications - the motivating use case is for comparing a probabilistic clustering solution to a set of reference or existing class labels that could have any number of classes (that is, without having to degrade the probabilistic clustering to hard classes).
Collective matrix factorization (CMF) finds joint low-rank representations for a collection of matrices with shared row or column entities. This code learns a variational Bayesian approximation for CMF, supporting multiple likelihood potentials and missing data, while identifying both factors shared by multiple matrices and factors private for each matrix. For further details on the method see Klami et al. (2014) <arXiv:1312.5921>. The package can also be used to learn Bayesian canonical correlation analysis (CCA) and group factor analysis (GFA) models, both of which are special cases of CMF. This is likely to be useful for people looking for CCA and GFA solutions supporting missing data and non-Gaussian likelihoods. See Klami et al. (2013) <https://research.cs.aalto.fi/pml/online-papers/klami13a.pdf> and Virtanen et al. (2012) <http://proceedings.mlr.press/v22/virtanen12.html> for details on Bayesian CCA and GFA, respectively.
This package implements the board game CamelUp for use in introductory statistics classes using a Shiny app.
This package provides access to the COLOURlovers <https://www.colourlovers.com/> API, which offers color inspiration and color palettes.
This package contains functions to detect and visualise periods of climate sensitivity (climate windows) for a given biological response. Please see van de Pol et al. (2016) <doi:10.1111/2041-210X.12590> and Bailey and van de Pol (2016) <doi:10.1371/journal.pone.0167980> for details.
Computes density function, cumulative distribution function, quantile function and random numbers for a multisection composite distribution specified by the user. Also fits the user specified distribution to a given data set. More details of the package can be found in the following paper submitted to the R journal Wiegand M and Nadarajah S (2017) CompDist: Multisection composite distributions.
Fits a pseudo Cox proprotional hazards model when survival times are missing for control groups.
Implementation of the d/p/q/r family of functions for a continuous analog to the standard discrete binomial with continuous size parameter and continuous support with x in [0, size + 1], following Ilienko (2013) <arXiv:1303.5990>.
Data on international and other major cricket matches from ESPNCricinfo <https://www.espncricinfo.com> and Cricsheet <https://cricsheet.org>. This package provides some functions to download the data into tibbles ready for analysis.
This package provides a verity of summary tables of the Covid19 cases in San Francisco. Data source: San Francisco, Department of Public Health - Population Health Division <https://datasf.org/opendata/>.
This package provides a tool that imports, subsets, and exports the CongressData dataset. CongressData contains approximately 800 variables concerning all US congressional districts with data back to 1789. The dataset tracks district characteristics, members of Congress, and the political behavior of those members. Users with only a basic understanding of R can subset this data across multiple dimensions, export their search results, identify the citations associated with their searches, and more.
Copernicus Digital Elevation Model datasets (DEM) of 90 and 30 meters resolution using the awscli command line tool. The Copernicus (DEM) is included in the Registry of Open Data on AWS (Amazon Web Services) and represents the surface of the Earth including buildings, infrastructure and vegetation.