Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Predicts the most common race of a surname and based on U.S. Census data, and the most common first named based on U.S. Social Security Administration data.
This package provides tools for transforming, a posteriori time-scaling, and modifying phylogenies containing extinct (i.e. fossil) lineages. In particular, most users are interested in the functions timePaleoPhy, bin_timePaleoPhy, cal3TimePaleoPhy and bin_cal3TimePaleoPhy, which date cladograms of fossil taxa using stratigraphic data. This package also contains a large number of likelihood functions for estimating sampling and diversification rates from different types of data available from the fossil record (e.g. range data, occurrence data, etc). paleotree users can also simulate diversification and sampling in the fossil record using the function simFossilRecord, which is a detailed simulator for branching birth-death-sampling processes composed of discrete taxonomic units arranged in ancestor-descendant relationships. Users can use simFossilRecord to simulate diversification in incompletely sampled fossil records, under various models of morphological differentiation (i.e. the various patterns by which morphotaxa originate from one another), and with time-dependent, longevity-dependent and/or diversity-dependent rates of diversification, extinction and sampling. Additional functions allow users to translate simulated ancestor-descendant data from simFossilRecord into standard time-scaled phylogenies or unscaled cladograms that reflect the relationships among taxon units.
Simplify your portfolio optimization process by applying a contemporary modeling way to model and solve your portfolio problems. While most approaches and packages are rather complicated this one tries to simplify things and is agnostic regarding risk measures as well as optimization solvers. Some of the methods implemented are described by Konno and Yamazaki (1991) <doi:10.1287/mnsc.37.5.519>, Rockafellar and Uryasev (2001) <doi:10.21314/JOR.2000.038> and Markowitz (1952) <doi:10.1111/j.1540-6261.1952.tb01525.x>.
Several person-fit statistics (PFSs; Meijer and Sijtsma, 2001, <doi:10.1177/01466210122031957>) are offered. These statistics allow assessing whether individual response patterns to tests or questionnaires are (im)plausible given the other respondents in the sample or given a specified item response theory model. Some PFSs apply to dichotomous data, such as the likelihood-based PFSs (lz, lz*) and the group-based PFSs (personal biserial correlation, caution index, (normed) number of Guttman errors, agreement/disagreement/dependability statistics, U3, ZU3, NCI, Ht). PFSs suitable to polytomous data include extensions of lz, U3, and (normed) number of Guttman errors.
This package contains modeling and analytical tools for plant ecophysiology. MODELING: Simulate C3 photosynthesis using the Farquhar, von Caemmerer, Berry (1980) <doi:10.1007/BF00386231> model as described in Buckley and Diaz-Espejo (2015) <doi:10.1111/pce.12459>. It uses units to ensure that parameters are properly specified and transformed before calculations. Temperature response functions get automatically "baked" into all parameters based on leaf temperature following Bernacchi et al. (2002) <doi:10.1104/pp.008250>. The package includes boundary layer, cuticular, stomatal, and mesophyll conductances to CO2, which each can vary on the upper and lower portions of the leaf. Use straightforward functions to simulate photosynthesis over environmental gradients such as Photosynthetic Photon Flux Density (PPFD) and leaf temperature, or over trait gradients such as CO2 conductance or photochemistry. ANALYTICAL TOOLS: Fit ACi (Farquhar et al. (1980) <doi:10.1007/BF00386231>) and AQ curves (Marshall & Biscoe (1980) <doi:10.1093/jxb/31.1.29>), temperature responses (Heskel et al. (2016) <doi:10.1073/pnas.1520282113>; Kruse et al. (2008) <doi:10.1111/j.1365-3040.2008.01809.x>, Medlyn et al. (2002) <doi:10.1046/j.1365-3040.2002.00891.x>, Hobbs et al. (2013) <doi:10.1021/cb4005029>), respiration in the light (Kok (1956) <doi:10.1016/0006-3002(56)90003-8>, Walker & Ort (2015) <doi:10.1111/pce.12562>, Yin et al. (2009) <doi:10.1111/j.1365-3040.2009.01934.x>, Yin et al. (2011) <doi:10.1093/jxb/err038>), mesophyll conductance (Harley et al. (1992) <doi:10.1104/pp.98.4.1429>), pressure-volume curves (Koide et al. (2000) <doi:10.1007/978-94-009-2221-1_9>, Sack et al. (2003) <doi:10.1046/j.0016-8025.2003.01058.x>, Tyree et al. (1972) <doi:10.1093/jxb/23.1.267>), hydraulic vulnerability curves (Ogle et al. (2009) <doi:10.1111/j.1469-8137.2008.02760.x>, Pammenter et al. (1998) <doi:10.1093/treephys/18.8-9.589>), and tools for running sensitivity analyses particularly for variables with uncertainty (e.g. g_mc(), gamma_star(), R_d()).
Spatial estimation of a prevalence surface or a relative risks surface, using data from a Demographic and Health Survey (DHS) or an analog survey, see Larmarange et al. (2011) <doi:10.4000/cybergeo.24606>.
Measure productivity and efficiency using Data Envelopment Analysis (DEA). Available methods include DEA under different technology assumptions, bootstrapping of efficiency scores and calculation of the Malmquist productivity index. Analyses can be performed either in the console or with the provided shiny app. See Banker, R.; Charnes, A.; Cooper, W.W. (1984) <doi:10.1287/mnsc.30.9.1078>, Färe, R.; Grosskopf, S. (1996) <doi:10.1007/978-94-009-1816-0>.
This package provides access to material from the book "Processing and Analyzing Financial Data with R" by Marcelo Perlin (2017) available at <https://sites.google.com/view/pafdr/home>.
This package provides an interface to the GenderAPI.io Phone Number Validation & Formatter API (<https://www.genderapi.io>) for validating international phone numbers, detecting number type (mobile, landline, Voice over Internet Protocol (VoIP)), retrieving region and country metadata, and formatting numbers to E.164 or national format. Designed to simplify integration into R workflows for data validation, Customer Relationship Management (CRM) data cleaning, and analytics tasks. Full documentation is available at <https://www.genderapi.io/docs-phone-validation-formatter-api>.
This package provides a suite of empirical Bayes methods to use in pharmacovigilance. Contains various model fitting and post-processing functions. For more details see Tan et al. (2025) <doi:10.48550/arXiv.2502.09816>, <doi:10.48550/arXiv.2512.01057>; Koenker and Mizera (2014) <doi:10.1080/01621459.2013.869224>; Efron (2016) <doi:10.1093/biomet/asv068>.
Analyse prescription drug deliveries to calculate several indicators of polypharmacy corresponding to the various definitions found in the literature. Bjerrum, L., Rosholm, J. U., Hallas, J., & Kragstrup, J. (1997) <doi:10.1007/s002280050329>. Chan, D.-C., Hao, Y.-T., & Wu, S.-C. (2009a) <doi:10.1002/pds.1712>. Fincke, B. G., Snyder, K., Cantillon, C., Gaehde, S., Standring, P., Fiore, L., ... Gagnon, D.R. (2005) <doi:10.1002/pds.966>. Hovstadius, B., Astrand, B., & Petersson, G. (2009) <doi:10.1186/1472-6904-9-11>. Hovstadius, B., Astrand, B., & Petersson, G. (2010) <doi:10.1002/pds.1921>. Kennerfalk, A., Ruigómez, A., Wallander, M.-A., Wilhelmsen, L., & Johansson, S. (2002) <doi:10.1345/aph.1A226>. Masnoon, N., Shakib, S., Kalisch-Ellett, L., & Caughey, G. E. (2017) <doi:10.1186/s12877-017-0621-2>. Narayan, S. W., & Nishtala, P. S. (2015) <doi:10.1007/s40801-015-0020-y>. Nishtala, P. S., & Salahudeen, M. S. (2015) <doi:10.1159/000368191>. Park, H. Y., Ryu, H. N., Shim, M. K., Sohn, H. S., & Kwon, J. W. (2016) <doi:10.5414/cp202484>. Veehof, L., Stewart, R., Haaijer-Ruskamp, F., & Jong, B. M. (2000) <doi:10.1093/fampra/17.3.261>.
This package provides tools for statistical testing of correlation coefficients through robust permutation method and large sample approximation method. Tailored to different types of correlation coefficients including Pearson correlation coefficient, weighted Pearson correlation coefficient, Spearman correlation coefficient, and Lin's concordance correlation coefficient.The robust permutation test controls type I error under general scenarios when sample size is small and two variables are dependent but uncorrelated. The large sample approximation test generally controls type I error when the sample size is large (>200).
This package provides a comprehensive collection of tools for creating, manipulating and visualising pedigrees and genetic marker data. Pedigrees can be read from text files or created on the fly with built-in functions. A range of utilities enable modifications like adding or removing individuals, breaking loops, and merging pedigrees. An online tool for creating pedigrees interactively, based on pedtools', is available at <https://magnusdv.shinyapps.io/quickped>. pedtools is the hub of the pedsuite', a collection of packages for pedigree analysis. A detailed presentation of the pedsuite is given in the book Pedigree Analysis in R (Vigeland, 2021, ISBN:9780128244302).
Implementation of Probabilistic Regression Trees (PRTree), providing functions for model fitting and prediction, with specific adaptations to handle missing values. The main computations are implemented in Fortran for high efficiency. The package is based on the PRTree methodology described in Alkhoury et al. (2020), "Smooth and Consistent Probabilistic Regression Trees" <https://proceedings.neurips.cc/paper_files/paper/2020/file/8289889263db4a40463e3f358bb7c7a1-Paper.pdf>. Details on the treatment of missing data and implementation aspects are presented in Prass, T.S.; Neimaier, A.S.; Pumi, G. (2025), "Handling Missing Data in Probabilistic Regression Trees: Methods and Implementation in R" <doi:10.48550/arXiv.2510.03634>.
This package provides a simple implementation of the Predictive Information Index ('PII').
Particle swarm optimization - a basic variant.
Pedigree related functions.
Pharmacokinetics is the study of drug absorption, distribution, metabolism, and excretion. The pharmacokinetics model explains that how the drug concentration change as the drug moves through the different compartments of the body. For pharmacokinetic modeling and analysis, it is essential to understand the basic pharmacokinetic parameters. All parameters are considered, but only some of parameters are used in the model. Therefore, we need to convert the estimated parameters to the other parameters after fitting the specific pharmacokinetic model. This package is developed to help this converting work. For more detailed explanation of pharmacokinetic parameters, see "Gabrielsson and Weiner" (2007), "ISBN-10: 9197651001"; "Benet and Zia-Amirhosseini" (1995) <DOI: 10.1177/019262339502300203>; "Mould and Upton" (2012) <DOI: 10.1038/psp.2012.4>; "Mould and Upton" (2013) <DOI: 10.1038/psp.2013.14>.
Visualizes the coverage depth of a complete plastid genome as well as the equality of its inverted repeat regions in relation to the circular, quadripartite genome structure and the location of individual genes. For more information, please see Gruenstaeudl and Jenke (2020) <doi:10.1186/s12859-020-3475-0>.
Utilizes the lme4 and optimx packages (previously the optim() function from stats') to estimate (generalized) linear mixed models (GLMM) with factor structures using a profile likelihood approach, as outlined in Jeon and Rabe-Hesketh (2012) <doi:10.3102/1076998611417628> and Rockwood and Jeon (2019) <doi:10.1080/00273171.2018.1516541>. Factor analysis and item response models can be extended to allow for an arbitrary number of nested and crossed random effects, making it useful for multilevel and cross-classified models.
For working with the Prevision.io AI model management platform's API <https://prevision.io/>.
An implementation of Horn's technique for numerically and graphically evaluating the components or factors retained in a principle components analysis (PCA) or common factor analysis (FA). Horn's method contrasts eigenvalues produced through a PCA or FA on a number of random data sets of uncorrelated variables with the same number of variables and observations as the experimental or observational data set to produce eigenvalues for components or factors that are adjusted for the sample error-induced inflation. Components with adjusted eigenvalues greater than one are retained. paran may also be used to conduct parallel analysis following Glorfeld's (1995) suggestions to reduce the likelihood of over-retention.
PACTA (Paris Agreement Capital Transition Assessment) for Banks is a tool that allows banks to calculate the climate alignment of their corporate lending portfolios. This package is designed to make it easy to install and load multiple PACTA for Banks packages in a single step. It also provides thorough documentation - the PACTA for Banks cookbook at <https://rmi-pacta.github.io/pacta.loanbook/articles/cookbook_overview.html> - on how to run a PACTA for Banks analysis. This covers prerequisites for the analysis, the separate steps of running the analysis, the interpretation of PACTA for Banks results, and advanced use cases.
To take nested function calls and convert them to a more readable form using pipes from package magrittr'.