_            _    _        _         _
      /\ \         /\ \ /\ \     /\_\      / /\
      \_\ \       /  \ \\ \ \   / / /     / /  \
      /\__ \     / /\ \ \\ \ \_/ / /     / / /\ \__
     / /_ \ \   / / /\ \ \\ \___/ /     / / /\ \___\
    / / /\ \ \ / / /  \ \_\\ \ \_/      \ \ \ \/___/
   / / /  \/_// / /   / / / \ \ \        \ \ \
  / / /      / / /   / / /   \ \ \   _    \ \ \
 / / /      / / /___/ / /     \ \ \ /_/\__/ / /
/_/ /      / / /____\/ /       \ \_\\ \/___/ /
\_\/       \/_________/         \/_/ \_____\/

Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.

API method:

GET /api/packages?search=hello&page=1&limit=20

where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned in response headers.

If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.


r-salad 1.2
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=salad
Licenses: Expat
Build system: r
Synopsis: Simple Automatic Differentiation
Description:

Handles both vector and matrices, using a flexible S4 class for automatic differentiation. The method used is forward automatic differentiation. Many functions and methods have been defined, so that in most cases, functions written without automatic differentiation in mind can be used without change.

r-selectmeta 1.0.9
Propagated dependencies: r-deoptim@2.2-8
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: http://www.kasparrufibach.ch
Licenses: GPL 2+
Build system: r
Synopsis: Estimation of Weight Functions in Meta Analysis
Description:

Publication bias, the fact that studies identified for inclusion in a meta analysis do not represent all studies on the topic of interest, is commonly recognized as a threat to the validity of the results of a meta analysis. One way to explicitly model publication bias is via selection models or weighted probability distributions. In this package we provide implementations of several parametric and nonparametric weight functions. The novelty in Rufibach (2011) is the proposal of a non-increasing variant of the nonparametric weight function of Dear & Begg (1992). The new approach potentially offers more insight in the selection process than other methods, but is more flexible than parametric approaches. To maximize the log-likelihood function proposed by Dear & Begg (1992) under a monotonicity constraint we use a differential evolution algorithm proposed by Ardia et al (2010a, b) and implemented in Mullen et al (2009). In addition, we offer a method to compute a confidence interval for the overall effect size theta, adjusted for selection bias as well as a function that computes the simulation-based p-value to assess the null hypothesis of no selection as described in Rufibach (2011, Section 6).

r-slick 1.0.0
Propagated dependencies: r-tibble@3.3.0 r-shiny@1.11.1 r-scales@1.4.0 r-golem@0.5.1 r-ggrepel@0.9.6 r-ggplot2@4.0.1 r-dt@0.34.0 r-dplyr@1.1.4 r-cli@3.6.5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://slick.bluematterscience.com/
Licenses: GPL 2
Build system: r
Synopsis: Interactive Visualization of MSE Results
Description:

This package provides a framework for visualizing and exploring results of a Management Strategy Evaluation (MSE). The publication quality figures and tables can be developed directly from the R console, or interactively explored with the Slick App. For more details, see the `Slick` website <https://slick.bluematterscience.com>.

r-switchselection 2.0.0
Propagated dependencies: r-rcpparmadillo@15.2.2-1 r-rcpp@1.1.0 r-mnorm@1.2.2 r-hpa@1.3.3 r-gena@1.0.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=switchSelection
Licenses: GPL 2+
Build system: r
Synopsis: Endogenous Switching and Sample Selection Regression Models
Description:

Estimate the parameters of multivariate endogenous switching and sample selection models using methods described in Newey (2009) <doi:10.1111/j.1368-423X.2008.00263.x>, E. Kossova, B. Potanin (2018) <https://ideas.repec.org/a/ris/apltrx/0346.html>, E. Kossova, L. Kupriianova, B. Potanin (2020) <https://ideas.repec.org/a/ris/apltrx/0391.html> and E. Kossova, B. Potanin (2022) <https://ideas.repec.org/a/ris/apltrx/0455.html>.

r-simrestore 1.1.5
Propagated dependencies: r-tibble@3.3.0 r-subplex@1.9 r-shiny@1.11.1 r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=simRestore
Licenses: GPL 2+
Build system: r
Synopsis: Simulate the Effect of Management Policies on Restoration Efforts
Description:

Simulation methods to study the effect of management policies on efforts to restore populations back to their original genetic composition. Allows for single-scenario simulation and for optimization of specific chosen scenarios. Further information can be found in Hernandez, Janzen and Lavretsky (2023) <doi:10.1111/1755-0998.13892>.

r-swdpwr 1.11
Propagated dependencies: r-spatstat-random@3.4-3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=swdpwr
Licenses: GPL 3
Build system: r
Synopsis: Power Calculation for Stepped Wedge Cluster Randomized Trials
Description:

To meet the needs of statistical power calculation for stepped wedge cluster randomized trials, we developed this software. Different parameters can be specified by users for different scenarios, including: cross-sectional and cohort designs, binary and continuous outcomes, marginal (GEE) and conditional models (mixed effects model), three link functions (identity, log, logit links), with and without time effects (the default specification assumes no-time-effect) under exchangeable, nested exchangeable and block exchangeable correlation structures. Unequal numbers of clusters per sequence are also allowed. The methods included in this package: Zhou et al. (2020) <doi:10.1093/biostatistics/kxy031>, Li et al. (2018) <doi:10.1111/biom.12918>. Supplementary documents can be found at: <https://ysph.yale.edu/cmips/research/software/study-design-power-calculation/swdpwr/>. The Shiny app for swdpwr can be accessed at: <https://jiachenchen322.shinyapps.io/swdpwr_shinyapp/>. The package also includes functions that perform calculations for the intra-cluster correlation coefficients based on the random effects variances as input variables for continuous and binary outcomes, respectively.

r-smacofx 1.22-0
Propagated dependencies: r-weights@1.1.2 r-vegan@2.7-2 r-smacof@2.1-7 r-projectionbasedclustering@1.2.2 r-plotrix@3.8-13 r-minqa@1.2.8 r-mass@7.3-65
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://r-forge.r-project.org/projects/stops/
Licenses: GPL 2 GPL 3
Build system: r
Synopsis: Flexible Multidimensional Scaling and 'smacof' Extensions
Description:

Flexible multidimensional scaling (MDS) methods and extensions to the package smacof'. This package contains various functions, wrappers, methods and classes for fitting, plotting and displaying a large number of different flexible MDS models. These are: Torgerson scaling (Torgerson, 1958, ISBN:978-0471879459) with powers, Sammon mapping (Sammon, 1969, <doi:10.1109/T-C.1969.222678>) with ratio and interval optimal scaling, Multiscale MDS (Ramsay, 1977, <doi:10.1007/BF02294052>) with ratio and interval optimal scaling, s-stress MDS (ALSCAL; Takane, Young & De Leeuw, 1977, <doi:10.1007/BF02293745>) with ratio and interval optimal scaling, elastic scaling (McGee, 1966, <doi:10.1111/j.2044-8317.1966.tb00367.x>) with ratio and interval optimal scaling, r-stress MDS (De Leeuw, Groenen & Mair, 2016, <https://rpubs.com/deleeuw/142619>) with ratio, interval, splines and nonmetric optimal scaling, power-stress MDS (POST-MDS; Buja & Swayne, 2002 <doi:10.1007/s00357-001-0031-0>) with ratio and interval optimal scaling, restricted power-stress (Rusch, Mair & Hornik, 2021, <doi:10.1080/10618600.2020.1869027>) with ratio and interval optimal scaling, approximate power-stress with ratio optimal scaling (Rusch, Mair & Hornik, 2021, <doi:10.1080/10618600.2020.1869027>), Box-Cox MDS (Chen & Buja, 2013, <https://jmlr.org/papers/v14/chen13a.html>), local MDS (Chen & Buja, 2009, <doi:10.1198/jasa.2009.0111>), curvilinear component analysis (Demartines & Herault, 1997, <doi:10.1109/72.554199>), curvilinear distance analysis (Lee, Lendasse & Verleysen, 2004, <doi:10.1016/j.neucom.2004.01.007>), nonlinear MDS with optimal dissimilarity powers functions (De Leeuw, 2024, <https://github.com/deleeuw/smacofManual/blob/main/smacofPO(power)/smacofPO.pdf>), sparsified (power) MDS and sparsified multidimensional (power) distance analysis aka extended curvilinear (power) component analysis and extended curvilinear (power) distance analysis (Rusch, 2024, <doi:10.57938/355bf835-ddb7-42f4-8b85-129799fc240e>). Some functions are suitably flexible to allow any other sensible combination of explicit power transformations for weights, distances and input proximities with implicit ratio, interval, splines or nonmetric optimal scaling of the input proximities. Most functions use a Majorization-Minimization algorithm. Currently the methods are only available for one-mode two-way data (symmetric dissimilarity matrices).

r-spotifyr 2.2.5
Propagated dependencies: r-xml2@1.5.0 r-tibble@3.3.0 r-stringr@1.6.0 r-rvest@1.0.5 r-rlang@1.1.6 r-readr@2.1.6 r-purrr@1.2.0 r-magrittr@2.0.4 r-lubridate@1.9.4 r-jsonlite@2.0.0 r-janitor@2.2.1 r-httr@1.4.7 r-dplyr@1.1.4 r-assertthat@0.2.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/charlie86/spotifyr
Licenses: Expat
Build system: r
Synopsis: R Wrapper for the 'Spotify' Web API
Description:

An R wrapper for pulling data from the Spotify Web API <https://developer.spotify.com/documentation/web-api/> in bulk, or post items on a Spotify user's playlist.

r-signacx 2.2.5
Propagated dependencies: r-seurat@5.3.1 r-rjsonio@2.0.0 r-rcolorbrewer@1.1-3 r-pbmcapply@1.5.1 r-neuralnet@1.44.2 r-matrix@1.7-4 r-lme4@1.1-37 r-jsonlite@2.0.0 r-igraph@2.2.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/mathewchamberlain/SignacX
Licenses: GPL 3
Build system: r
Synopsis: Cell Type Identification and Discovery from Single Cell Gene Expression Data
Description:

An implementation of neural networks trained with flow-sorted gene expression data to classify cellular phenotypes in single cell RNA-sequencing data. See Chamberlain M et al. (2021) <doi:10.1101/2021.02.01.429207> for more details.

r-stevethemes 0.1.0
Propagated dependencies: r-systemfonts@1.3.1 r-rlang@1.1.6 r-ggplot2@4.0.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: http://svmiller.com/stevethemes/
Licenses: Expat
Build system: r
Synopsis: Steve's 'ggplot2' Themes and Related Theme Elements
Description:

This is a compilation of my preferred themes and related theme elements for ggplot2'. I believe these themes and theme elements are aesthetically pleasing, both for pedagogical instruction and for the presentation of applied statistical research to a wide audience. These themes imply routine use of easily obtained/free fonts, simple forms of which are included in this package.

r-shinyalert 3.1.0
Propagated dependencies: r-uuid@1.2-1 r-shiny@1.11.1 r-htmltools@0.5.8.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/daattali/shinyalert
Licenses: Expat
Build system: r
Synopsis: Easily Create Pretty Popup Messages (Modals) in 'Shiny'
Description:

Easily create pretty popup messages (modals) in Shiny'. A modal can contain text, images, OK/Cancel buttons, an input to get a response from the user, and many more customizable options.

r-sk4fga 0.1.1
Propagated dependencies: r-rcpp@1.1.0
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/tobyhayward13/SCI118UOA_ForensicGlassAnalysis
Licenses: GPL 2+
Build system: r
Synopsis: Scott-Knott for Forensic Glass Analysis
Description:

In forensics, it is common and effective practice to analyse glass fragments from the scene and suspects to gain evidence of placing a suspect at the crime scene. This kind of analysis involves comparing the physical and chemical attributes of glass fragments that exist on both the person and at the crime scene, and assessing the significance in a likeness that they share. The package implements the Scott-Knott Modification 2 algorithm (SKM2) (Christopher M. Triggs and James M. Curran and John S. Buckleton and Kevan A.J. Walsh (1997) <doi:10.1016/S0379-0738(96)02037-3> "The grouping problem in forensic glass analysis: a divisive approach", Forensic Science International, 85(1), 1--14) for small sample glass fragment analysis using the refractive index (ri) of a set of glass samples. It also includes an experimental multivariate analog to the Scott-Knott algorithm for similar analysis on glass samples with multiple chemical concentration variables and multiple samples of the same item; testing against the Hotellings T^2 distribution (J.M. Curran and C.M. Triggs and J.R. Almirall and J.S. Buckleton and K.A.J. Walsh (1997) <doi:10.1016/S1355-0306(97)72197-X> "The interpretation of elemental composition measurements from forensic glass evidence", Science & Justice, 37(4), 241--244).

r-shelf 1.12.1
Propagated dependencies: r-tidyr@1.3.1 r-survminer@0.5.1 r-survival@3.8-3 r-sn@2.1.1 r-shinymatrix@0.8.0 r-shiny@1.11.1 r-scales@1.4.0 r-rmarkdown@2.30 r-hmisc@5.2-4 r-ggridges@0.5.7 r-ggplot2@4.0.1 r-ggextra@0.11.0 r-flexsurv@2.3.2
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/OakleyJ/SHELF
Licenses: GPL 2 GPL 3
Build system: r
Synopsis: Tools to Support the Sheffield Elicitation Framework
Description:

This package implements various methods for eliciting a probability distribution for a single parameter from an expert or a group of experts. The expert provides a small number of probability judgements, corresponding to points on his or her cumulative distribution function. A range of parametric distributions can then be fitted and displayed, with feedback provided in the form of fitted probabilities and percentiles. For multiple experts, a weighted linear pool can be calculated. Also includes functions for eliciting beliefs about population distributions; eliciting multivariate distributions using a Gaussian copula; eliciting a Dirichlet distribution; eliciting distributions for variance parameters in a random effects meta-analysis model; survival extrapolation. R Shiny apps for most of the methods are included.

r-smoothedlasso 1.6
Propagated dependencies: r-rdpack@2.6.4 r-matrix@1.7-4
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=smoothedLasso
Licenses: GPL 2+
Build system: r
Synopsis: Framework to Smooth L1 Penalized Regression Operators using Nesterov Smoothing
Description:

We provide full functionality to smooth L1 penalized regression operators and to compute regression estimates thereof. For this, the objective function of a user-specified regression operator is first smoothed using Nesterov smoothing (see Y. Nesterov (2005) <doi:10.1007/s10107-004-0552-5>), resulting in a modified objective function with explicit gradients everywhere. The smoothed objective function and its gradient are minimized via BFGS, and the obtained minimizer is returned. Using Nesterov smoothing, the smoothed objective function can be made arbitrarily close to the original (unsmoothed) one. In particular, the Nesterov approach has the advantage that it comes with explicit accuracy bounds, both on the L1/L2 difference of the unsmoothed to the smoothed objective functions as well as on their respective minimizers (see G. Hahn, S.M. Lutz, N. Laha, C. Lange (2020) <doi:10.1101/2020.09.17.301788>). A progressive smoothing approach is provided which iteratively smoothes the objective function, resulting in more stable regression estimates. A function to perform cross validation for selection of the regularization parameter is provided.

r-smle 2.2-3
Propagated dependencies: r-mvnfast@0.2.8 r-matrixcalc@1.0-6 r-glmnet@4.1-10
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=SMLE
Licenses: GPL 3
Build system: r
Synopsis: Joint Feature Screening via Sparse MLE
Description:

Feature screening is a powerful tool in processing ultrahigh dimensional data. It attempts to screen out most irrelevant features in preparation for a more elaborate analysis. Xu and Chen (2014)<doi:10.1080/01621459.2013.879531> proposed an effective screening method SMLE, which naturally incorporates the joint effects among features in the screening process. This package provides an efficient implementation of SMLE-screening for high-dimensional linear, logistic, and Poisson models. The package also provides a function for conducting accurate post-screening feature selection based on an iterative hard-thresholding procedure and a user-specified selection criterion. Zang, Xu, and Burkett (2025)<doi:10.18637/jss.v115.i08>.

r-sejmrp 1.3.4
Propagated dependencies: r-xml2@1.5.0 r-xml@3.99-0.20 r-tidyr@1.3.1 r-stringi@1.8.7 r-rvest@1.0.5 r-rpostgresql@0.7-8 r-factoextra@1.0.7 r-dplyr@1.1.4 r-dbi@1.2.3 r-cluster@2.1.8.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=sejmRP
Licenses: GPL 2
Build system: r
Synopsis: An Information About Deputies and Votings in Polish Diet from Seventh to Eighth Term of Office
Description:

Set of functions that access information about deputies and votings in Polish diet from webpage <http://www.sejm.gov.pl>. The package was developed as a result of an internship in MI2 Group - <http://mi2.mini.pw.edu.pl>, Faculty of Mathematics and Information Science, Warsaw University of Technology.

r-shinytest 1.6.1
Propagated dependencies: r-withr@3.0.2 r-webdriver@1.0.6 r-testthat@3.3.0 r-shiny@1.11.1 r-rstudioapi@0.17.1 r-rlang@1.1.6 r-rematch@2.0.0 r-r6@2.6.1 r-pingr@2.0.5 r-parsedate@1.3.2 r-jsonlite@2.0.0 r-httr@1.4.7 r-httpuv@1.6.16 r-htmlwidgets@1.6.4 r-digest@0.6.39 r-debugme@1.2.0 r-crayon@1.5.3 r-callr@3.7.6 r-assertthat@0.2.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/rstudio/shinytest
Licenses: Expat
Build system: r
Synopsis: Test Shiny Apps
Description:

Please see the shinytest to shinytest2 migration guide at <https://rstudio.github.io/shinytest2/articles/z-migration.html>.

r-safetygraphics 2.1.1
Propagated dependencies: r-yaml@2.3.10 r-tidyr@1.3.1 r-stringr@1.6.0 r-sortable@0.6.0 r-shinyjs@2.1.0 r-shiny@1.11.1 r-safetydata@1.0.0 r-safetycharts@0.3.0 r-rlang@1.1.6 r-rclipboard@0.2.1 r-purrr@1.2.0 r-magrittr@2.0.4 r-jsonlite@2.0.0 r-htmlwidgets@1.6.4 r-dt@0.34.0 r-dplyr@1.1.4 r-datamods@1.5.3
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/SafetyGraphics/safetyGraphics
Licenses: Expat
Build system: r
Synopsis: Interactive Graphics for Monitoring Clinical Trial Safety
Description:

This package provides a framework for evaluation of clinical trial safety. Users can interactively explore their data using the included Shiny application.

r-sigint 0.2.0
Propagated dependencies: r-xtable@1.8-4 r-stringr@1.6.0 r-randomforest@4.7-1.2 r-pbivnorm@0.6.0 r-maxlik@1.5-2.1 r-mass@7.3-65 r-formula@1.2-5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/ccrismancox/sigint
Licenses: GPL 3+
Build system: r
Synopsis: Estimate the Parameters of a Discrete Crisis-Bargaining Game
Description:

This package provides pseudo-likelihood methods for empirically analyzing common signaling games in international relations as described in Crisman-Cox and Gibilisco (2019) <doi:10.1017/psrm.2019.58>.

r-stratigrapher 1.3.1
Propagated dependencies: r-xml@3.99-0.20 r-stringr@1.6.0 r-shiny@1.11.1 r-reshape@0.8.10 r-dplyr@1.1.4 r-diagram@1.6.5
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=StratigrapheR
Licenses: GPL 3
Build system: r
Synopsis: Integrated Stratigraphy
Description:

Includes bases for litholog generation: graphical functions based on R base graphics, interval management functions and svg importation functions among others. Also include stereographic projection functions, and other functions made to deal with large datasets while keeping options to get into the details of the data. When using for publication please cite Sebastien Wouters, Anne-Christine Da Silva, Frederic Boulvain and Xavier Devleeschouwer, 2021. The R Journal 13:2, 153-178. The palaeomagnetism functions are based on: Tauxe, L., 2010. Essentials of Paleomagnetism. University of California Press. <https://earthref.org/MagIC/books/Tauxe/Essentials/>; Allmendinger, R. W., Cardozo, N. C., and Fisher, D., 2013, Structural Geology Algorithms: Vectors & Tensors: Cambridge, England, Cambridge University Press, 289 pp.; Cardozo, N., and Allmendinger, R. W., 2013, Spherical projections with OSXStereonet: Computers & Geosciences, v. 51, no. 0, p. 193 - 205, <doi: 10.1016/j.cageo.2012.07.021>.

r-skedastic 2.0.3
Propagated dependencies: r-slam@0.1-55 r-roi-plugin-qpoases@1.0-3 r-roi@1.0-1 r-rfast@2.1.5.2 r-rdpack@2.6.4 r-quadprogxt@0.0.6 r-quadprog@1.5-8 r-pracma@2.4.6 r-osqp@0.6.3.3 r-mgcv@1.9-4 r-matrix@1.7-4 r-mass@7.3-65 r-inflection@1.3.7 r-compquadform@1.4.4 r-caret@7.0-1 r-broom@1.0.10
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/tjfarrar/skedastic
Licenses: Expat
Build system: r
Synopsis: Handling Heteroskedasticity in the Linear Regression Model
Description:

This package implements numerous methods for testing for, modelling, and correcting for heteroskedasticity in the classical linear regression model. The most novel contribution of the package is found in the functions that implement the as-yet-unpublished auxiliary linear variance models and auxiliary nonlinear variance models that are designed to estimate error variances in a heteroskedastic linear regression model. These models follow principles of statistical learning described in Hastie (2009) <doi:10.1007/978-0-387-21606-5>. The nonlinear version of the model is estimated using quasi-likelihood methods as described in Seber and Wild (2003, ISBN: 0-471-47135-6). Bootstrap methods for approximate confidence intervals for error variances are implemented as described in Efron and Tibshirani (1993, ISBN: 978-1-4899-4541-9), including also the expansion technique described in Hesterberg (2014) <doi:10.1080/00031305.2015.1089789>. The wild bootstrap employed here follows the description in Davidson and Flachaire (2008) <doi:10.1016/j.jeconom.2008.08.003>. Tuning of hyper-parameters makes use of a golden section search function that is modelled after the MATLAB function of Zarnowiec (2022) <https://www.mathworks.com/matlabcentral/fileexchange/25919-golden-section-method-algorithm>. A methodological description of the algorithm can be found in Fox (2021, ISBN: 978-1-003-00957-3). There are 25 different functions that implement hypothesis tests for heteroskedasticity. These include a test based on Anscombe (1961) <https://projecteuclid.org/euclid.bsmsp/1200512155>, Ramsey's (1969) BAMSET Test <doi:10.1111/j.2517-6161.1969.tb00796.x>, the tests of Bickel (1978) <doi:10.1214/aos/1176344124>, Breusch and Pagan (1979) <doi:10.2307/1911963> with and without the modification proposed by Koenker (1981) <doi:10.1016/0304-4076(81)90062-2>, Carapeto and Holt (2003) <doi:10.1080/0266476022000018475>, Cook and Weisberg (1983) <doi:10.1093/biomet/70.1.1> (including their graphical methods), Diblasi and Bowman (1997) <doi:10.1016/S0167-7152(96)00115-0>, Dufour, Khalaf, Bernard, and Genest (2004) <doi:10.1016/j.jeconom.2003.10.024>, Evans and King (1985) <doi:10.1016/0304-4076(85)90085-5> and Evans and King (1988) <doi:10.1016/0304-4076(88)90006-1>, Glejser (1969) <doi:10.1080/01621459.1969.10500976> as formulated by Mittelhammer, Judge and Miller (2000, ISBN: 0-521-62394-4), Godfrey and Orme (1999) <doi:10.1080/07474939908800438>, Goldfeld and Quandt (1965) <doi:10.1080/01621459.1965.10480811>, Harrison and McCabe (1979) <doi:10.1080/01621459.1979.10482544>, Harvey (1976) <doi:10.2307/1913974>, Honda (1989) <doi:10.1111/j.2517-6161.1989.tb01749.x>, Horn (1981) <doi:10.1080/03610928108828074>, Li and Yao (2019) <doi:10.1016/j.ecosta.2018.01.001> with and without the modification of Bai, Pan, and Yin (2016) <doi:10.1007/s11749-017-0575-x>, Rackauskas and Zuokas (2007) <doi:10.1007/s10986-007-0018-6>, Simonoff and Tsai (1994) <doi:10.2307/2986026> with and without the modification of Ferrari, Cysneiros, and Cribari-Neto (2004) <doi:10.1016/S0378-3758(03)00210-6>, Szroeter (1978) <doi:10.2307/1913831>, Verbyla (1993) <doi:10.1111/j.2517-6161.1993.tb01918.x>, White (1980) <doi:10.2307/1912934>, Wilcox and Keselman (2006) <doi:10.1080/10629360500107923>, Yuce (2008) <https://dergipark.org.tr/en/pub/iuekois/issue/8989/112070>, and Zhou, Song, and Thompson (2015) <doi:10.1002/cjs.11252>. Besides these heteroskedasticity tests, there are supporting functions that compute the BLUS residuals of Theil (1965) <doi:10.1080/01621459.1965.10480851>, the conditional two-sided p-values of Kulinskaya (2008) <doi:10.48550/arXiv.0810.2124>, and probabilities for the nonparametric trend statistic of Lehmann (1975, ISBN: 0-816-24996-1). For handling heteroskedasticity, in addition to the new auxiliary variance model methods, there is a function to implement various existing Heteroskedasticity-Consistent Covariance Matrix Estimators from the literature, such as those of White (1980) <doi:10.2307/1912934>, MacKinnon and White (1985) <doi:10.1016/0304-4076(85)90158-7>, Cribari-Neto (2004) <doi:10.1016/S0167-9473(02)00366-3>, Cribari-Neto et al. (2007) <doi:10.1080/03610920601126589>, Cribari-Neto and da Silva (2011) <doi:10.1007/s10182-010-0141-2>, Aftab and Chang (2016) <doi:10.18187/pjsor.v12i2.983>, and Li et al. (2017) <doi:10.1080/00949655.2016.1198906>.

r-sfcentral 0.1.3
Propagated dependencies: r-sf@1.0-23 r-scales@1.4.0 r-lwgeom@0.2-14 r-hmisc@5.2-4 r-geodist@0.1.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://gavg712.gitlab.io/sfcentral/
Licenses: GPL 3+
Build system: r
Synopsis: Spatial Centrality and Dispersion Statistics
Description:

Compute centrographic statistics (central points, standard distance, standard deviation ellipse, standard deviation box) for observations taken at point locations in 2D or 3D. The sfcentral library was inspired in aspace package but conceived to be used in a spatial tidyverse context.

r-sparsesurv 0.1.1
Dependencies: jags@4.3.1
Propagated dependencies: r-r2jags@0.8-9 r-coda@0.19-4.1
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://github.com/alexangelakis-ang/sparsesurv
Licenses: GPL 3+
Build system: r
Synopsis: Forecasting and Early Outbreak Detection for Sparse Count Data
Description:

This package provides functions for fitting, forecasting, and early detection of outbreaks in sparse surveillance count time series. Supports negative binomial (NB), self-exciting NB, generalise autoregressive moving average (GARMA) NB , zero-inflated NB (ZINB), self-exciting ZINB, generalise autoregressive moving average ZINB, and hurdle formulations. Climatic and environmental covariates can be included in the regression component and/or the zero-modified components. Includes outbreak-detection algorithms for NB, ZINB, and hurdle models, with utilities for prediction and diagnostics.

r-splm 1.6-5
Propagated dependencies: r-stringr@1.6.0 r-spdep@1.4-1 r-spatialreg@1.4-2 r-spam@2.11-1 r-plm@2.6-7 r-nlme@3.1-168 r-maxlik@1.5-2.1 r-matrix@1.7-4 r-mass@7.3-65 r-bdsmatrix@1.3-7
Channel: guix-cran
Location: guix-cran/packages/s.scm (guix-cran packages s)
Home page: https://cran.r-project.org/package=splm
Licenses: GPL 2
Build system: r
Synopsis: Econometric Models for Spatial Panel Data
Description:

ML and GM estimation and diagnostic testing of econometric models for spatial panel data.

Page: 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861
Total results: 68658