Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements the Self-Similarity Test for Normality (SSTN), a new statistical test designed to assess whether a given sample originates from a normal distribution. The procedure is based on iteratively estimating the characteristic function of the sum of standardized i.i.d. random variables and comparing it to the characteristic function of the standard normal distribution. A Monte Carlo procedure is used to determine the empirical distribution of the test statistic under the null hypothesis. Details of the methodology are described in Anarat and Schwender (2025), "A normality test based on self-similarity" (Submitted).
This package implements the methodological developments found in Hermes, van Heerwaarden, and Behrouzi (2024) <doi:10.48550/arXiv.2308.04325>, and allows for the statistical modeling of multi-group rank data in combination with object variables. The package also allows for the simulation of synthetic multi-group rank data.
Detection of item-wise Differential Item Functioning (DIF) in fitted mirt', multipleGroup or bfactor models using score-based structural change tests. Under the hood the sctest() function from the strucchange package is used.
Reimplementation of the svDialogs dialog boxes in Tcl/Tk.
Implementation of SAPEVO-M, a Group Ordinal Method for Multiple Criteria Decision-Making (MCDM). SAPEVO-M is an acronym for Simple Aggregation of Preferences Expressed by Ordinal Vectors Group Decision Making. This method provides alternatives ranking given decision makers preferences: criteria preferences and alternatives preferences for each criterion.This method is described in Gomes et al. (2020) <doi: 10.1590/0101-7438.2020.040.00226524 >.
The functions allow for the numerical evaluation of some commonly used entropy measures, such as Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, at selected parametric values from several well-known and widely used probability distributions. Moreover, the functions also compute the relative loss of these entropies using the truncated distributions. Related works include: Awad, A. M., & Alawneh, A. J. (1987). Application of entropy to a life-time model. IMA Journal of Mathematical Control and Information, 4(2), 143-148. <doi:10.1093/imamci/4.2.143>.
Offers a helping hand to psychologists and other behavioral scientists who routinely deal with experimental data from factorial experiments. It includes several functions to format output from other R functions according to the style guidelines of the APA (American Psychological Association). This formatted output can be copied directly into manuscripts to facilitate data reporting. These features are backed up by a toolkit of several small helper functions, e.g., offering out-of-the-box outlier removal. The package lends its name to Georg "Schorsch" Schuessler, ingenious technician at the Department of Psychology III, University of Wuerzburg. For details on the implemented methods, see Roland Pfister and Markus Janczyk (2016) <doi: 10.20982/tqmp.12.2.p147>.
Calculate superior identification index and its extensions. Measure the performance of journals based on how well they could identify the top papers by any index (e.g. citation indices) according to Huang & Yang. (2022) <doi:10.1007/s11192-022-04372-z>. These methods could be extended to evaluate other entities such as institutes, countries, etc.
This package provides a system that provides a streamlined way of generating publication ready plots for known Single-Cell transcriptomics data in a â publication readyâ format. This is, the goal is to automatically generate plots with the highest quality possible, that can be used right away or with minimal modifications for a research article.
We propose a procedure for sample size calculation while controlling false discovery rate for RNA-seq experimental design. Our procedure depends on the Voom method proposed for RNA-seq data analysis by Law et al. (2014) <DOI:10.1186/gb-2014-15-2-r29> and the sample size calculation method proposed for microarray experiments by Liu and Hwang (2007) <DOI:10.1093/bioinformatics/btl664>. We develop a set of functions that calculates appropriate sample sizes for two-sample t-test for RNA-seq experiments with fixed or varied set of parameters. The outputs also contain a plot of power versus sample size, a table of power at different sample sizes, and a table of critical test values at different sample sizes. To install this package, please use source("http://bioconductor.org/biocLite.R"); biocLite("ssizeRNA")'. For R version 3.5 or greater, please use if(!requireNamespace("BiocManager", quietly = TRUE))install.packages("BiocManager"); BiocManager::install("ssizeRNA")'.
This package provides functions for analyzing stocks or other investments. Main features are loading and aligning historical data for ticker symbols, calculating performance metrics for individual funds or portfolios (e.g. annualized growth, maximum drawdown, Sharpe/Sortino ratio), and creating graphs. C++ code is used to improve processing speed where possible.
This package provides a set of Rmarkdown themes for creating scientific and professional documents. Simple interface with features to ease navigation across the page and sub-pages.
Use behavioural variables to score activity and infer sleep from bouts of immobility. It is primarily designed to score sleep in fruit flies from Drosophila Activity Monitor (TriKinetics) and Ethoscope data. It implements sleep scoring using the "five-minute rule" (Hendricks et al. (2000) <DOI:10.1016/S0896-6273(00)80877-6>), activity classification for Ethoscopes (Geissmann et al. (2017) <DOI:10.1371/journal.pbio.2003026>) and a new algorithm to detect when animals are dead.
An extension of animate.css that allows user to easily add animations to any UI element in shiny app using the elements id.
Short and understandable commands that generate tabulated, formatted, and rounded survey estimates. Mostly a wrapper for the survey package (Lumley (2004) <doi:10.18637/jss.v009.i08> <https://CRAN.R-project.org/package=survey>) that identifies low-precision estimates using the National Center for Health Statistics (NCHS) presentation standards (Parker et al. (2017) <https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf>, Parker et al. (2023) <doi:10.15620/cdc:124368>).
An introduction to several novel predictive variable selection methods for random forest. They are based on various variable importance methods (i.e., averaged variable importance (AVI), and knowledge informed AVI (i.e., KIAVI, and KIAVI2)) and predictive accuracy in stepwise algorithms. For details of the variable selection methods, please see: Li, J., Siwabessy, J., Huang, Z. and Nichol, S. (2019) <doi:10.3390/geosciences9040180>. Li, J., Alvarez, B., Siwabessy, J., Tran, M., Huang, Z., Przeslawski, R., Radke, L., Howard, F., Nichol, S. (2017). <DOI: 10.13140/RG.2.2.27686.22085>.
This package provides a unifying framework for managing and deploying shiny applications that consist of modules, where an "app" is a tab-based workflow that guides a user step-by-step through an analysis. The shinymgr app builder "stitches" shiny modules together so that outputs from one module serve as inputs to the next, creating an analysis pipeline that is easy to implement and maintain. Users of shinymgr apps can save analyses as an RDS file that fully reproduces the analytic steps and can be ingested into an R Markdown report for rapid reporting. In short, developers use the shinymgr framework to write modules and seamlessly combine them into shiny apps, and users of these apps can execute reproducible analyses that can be incorporated into reports for rapid dissemination.
This package performs inference for a class of measures to compare competing risk prediction models with censored survival data. The class includes the integrated discrimination improvement index (IDI) and category-less net reclassification index (NRI).
Visual representations of model fit or predictive success in the form of "separation plots." See Greenhill, Brian, Michael D. Ward, and Audrey Sacks. "The separation plot: A new visual method for evaluating the fit of binary models." American Journal of Political Science 55.4 (2011): 991-1002.
This package provides a metric expressing the quality of a UMAP layout. This is a package that contains the Saturn_coefficient() function that reads an input matrix, its dimensionality reduction produced by UMAP, and evaluates the quality of this dimensionality reduction by producing a real value in the [0; 1] interval. We call this real value Saturn coefficient. A higher value means better dimensionality reduction; a lower value means worse dimensionality reduction. Reference: Davide Chicco et al. "The Saturn coefficient for evaluating the quality of UMAP dimensionality reduction results" (2025, in preparation).
Given a list of substance compositions, a list of substances involved in a process, and a list of constraints in addition to mass conservation of elementary constituents, the package contains functions to build the substance composition matrix, to analyze the uniqueness of process stoichiometry, and to calculate stoichiometric coefficients if process stoichiometry is unique. (See Reichert, P. and Schuwirth, N., A generic framework for deriving process stoichiometry in enviromental models, Environmental Modelling and Software 25, 1241-1251, 2010 for more details.).
Transfers/imputes statistics among Spanish spatial polygons (census sections or postal code areas) from different moments in time (2001-2023) without need of spatial files, just linking statistics to the ID codes of the spatial units. The data available in the census sections of a partition/division (cartography) into force in a moment of time is transferred to the census sections of another partition/division employing the geometric approach (also known as areal weighting or polygon overlay). References: Goerlich (2022) <doi:10.12842/WPIVIE_0322>. Pavà a and Cantarino (2017a, b) <doi:10.1111/gean.12112>, <doi:10.1016/j.apgeog.2017.06.021>. Pérez and Pavà a (2024a, b) <doi:10.4995/CARMA2024.2024.17796>, <doi:10.38191/iirr-jorr.24.057>. Acknowledgements: The authors wish to thank Consellerà a de Educación, Cultura, Universidades y Empleo, Generalitat Valenciana (grant CIACIO/2023/031), Consellerà a de Educación, Universidades y Empleo, Generalitat Valenciana (grant AICO/2021/257), Ministerio de Economà a e Innovación (grant PID2021-128228NB-I00) and Fundación Mapfre for supporting this research.
This package provides a variety of functions to estimate time-dependent true/false positive rates and AUC curves from a set of censored survival data.
This package provides a series of checks to identify common issues in Study Data Tabulation Model (SDTM) datasets. These checks are intended to be generalizable, actionable, and meaningful for analysis.