Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Regularized (polychotomous) logistic regression by Gibbs sampling. The package implements subtly different MCMC schemes with varying efficiency depending on the data type (binary v. binomial, say) and the desired estimator (regularized maximum likelihood, or Bayesian maximum a posteriori/posterior mean, etc.) through a unified interface. For details, see Gramacy & Polson (2012 <doi:10.1214/12-BA719>).
SaTScan'(TM) <https://www.satscan.org> is software for finding regions in Time, Space, or Time-Space that have excess risk, based on scan statistics, and uses Monte Carlo hypothesis testing to generate P-values for these regions. The rsatscan package provides functions for writing R data frames in SaTScan'-readable formats, for setting SaTScan parameters, for running SaTScan in the OS, and for reading the files that SaTScan creates.
Biodiversity is in crisis. The overarching aim of conservation is to preserve biodiversity patterns and processes. To this end, protected areas are established to buffer species and preserve biodiversity processes. But resources are limited and so protected areas must be cost-effective. This package contains tools to generate plans for protected areas (prioritizations), using spatially explicit targets for biodiversity patterns and processes. To obtain solutions in a feasible amount of time, this package uses the commercial Gurobi software (obtained from <https://www.gurobi.com/>). For more information on using this package, see Hanson et al. (2018) <doi:10.1111/2041-210X.12862>.
This package provides a client for (1) querying the DHS API for survey indicators and metadata (<https://api.dhsprogram.com/#/index.html>), (2) identifying surveys and datasets for analysis, (3) downloading survey datasets from the DHS website, (4) loading datasets and associate metadata into R, and (5) extracting variables and combining datasets for pooled analysis.
This package contains several useful navigation helper functions, including easily building folder paths, quick viewing dataframes in Excel', creating date vectors and changing the console prompt to reflect time.
This package provides an interface with the Wildbook mark-recapture ecological database framework. It helps users to pull data from the Wildbook framework and format data for further analysis with mark-recapture applications like Program MARK (which can be accessed via the RMark package in R'). Further information on the Wildbook framework is available at: <http://www.wildbook.org/doku.php>.
We implement a test of the rational expectations hypothesis based on the marginal distributions of realizations and subjective beliefs from D'Haultfoeuille, Gaillac, and Maurel (2018) <doi:10.3386/w25274>. This test can be used in cases where realizations and subjective beliefs are observed in two different datasets that cannot be matched, or when they are observed in the same dataset. The package also computes the estimator of the minimal deviations from rational expectations than can be rationalized by the data.
This package provides a collection of datasets that accompany the forthcoming book "R for Health Care Research".
Uses Elsevier Scopus API <https://dev.elsevier.com/sc_apis.html> to download information about authors and their citations.
Computation of the International Roughness Index (IRI) given a longitudinal road profile. The IRI can be calculated for a single road segment or for a sequence of segments with a fixed length (e. g. 100m). For the latter, an overlap of the segments can be selected. The IRI and likewise the algorithms for its determination are defined in Sayers, Michael W; Gillespie, Thomas D; Queiroz, Cesar A.V. 1986. The International Road Roughness Experiment (IRRE) : establishing correlation and a calibration standard for measurements. World Bank technical paper; no. WTP 45. Washington, DC : The World Bank. (ISBN 0-8213-0589-1) available from <http://documents.worldbank.org/curated/en/326081468740204115>.
Interaction with "RevBayes" via R. Objects created in "RevBayes" can be passed into the R environment, and many types can be converted into similar R objects. To download "RevBayes", go to <https://revbayes.github.io/download>.
Ranking of Alternatives through Functional mapping of criterion sub-intervals into a Single Interval Method is designed to perform multi-criteria decision-making (MCDM), developed by Mališa Žižovic in 2020 (<doi:10.3390/math8061015>). It calculates the final sorted rankings based on a decision matrix where rows represent alternatives and columns represent criteria. The method uses: - A numeric vector of weights for each criterion (the sum of weights must be 1). - A numeric vector of ideal values for each criterion. - A numeric vector of anti-ideal values for each criterion. - Numeric values representing the extent to which the ideal value is preferred over the anti-ideal value, and the extent to which the anti-ideal value is considered worse. The function standardizes the decision matrix, normalizes the data, applies weights, and returns the final sorted rankings.
Generates graphs, CSV files, and coordinates related to river valleys when calling the riverbuilder() function.
Export Rcmdr output to LaTeX or HTML code. The plug-in was originally intended to facilitate exporting Rcmdr output to formats other than ASCII text and to provide R novices with an easy-to-use, easy-to-access reference on exporting R objects to formats suited for printed output. The package documentation contains several pointers on creating reports, either by using conventional word processors or LaTeX/LyX.
Recursive partitioning methods to build classification trees for ordinal responses within the CART framework. Trees are grown using the Generalized Gini impurity function, where the misclassification costs are given by the absolute or squared differences in scores assigned to the categories of the response. Pruning is based on the total misclassification rate or on the total misclassification cost.
Cross-Linguistic Data Format (CLDF) is a framework for storing cross-linguistic data, ensuring compatibility and ease of data exchange between different linguistic datasets see Forkel et al. (2018) <doi:10.1038/sdata.2018.205>. The rcldf package is designed to facilitate the manipulation and analysis of these datasets by simplifying the loading, querying, and visualisation of CLDF datasets making it easier to conduct comparative linguistic analyses, manage language data, and apply statistical methods directly within R.
This package provides functionality to read files containing observations which consist of arbitrary key/value pairs.
This package provides functions to deal with matrix algebra for matrices with rational entries: determinant, rank, image and kernel, inverse, Cholesky decomposition. All computations are exact.
This package provides a custom implementation of the apriori algorithm and binomial tests to identify combinations of features (genes, variants etc) significantly enriched for simultaneous mutations/events from sparse Boolean input, see Vijay Kumar Pounraja, Santhosh Girirajan (2021). Version 1.1 includes a minor adjustment to the number of combinations to be considered for multiple testing correction. This updated version is more conservative in its approach and hence more selective. <doi:10.1101/2021.10.01.462832>.
An R command interface to the MLwiN multilevel modelling software package.
This package provides tools for linear, nonlinear and nonparametric regression and classification. Novel graphical methods for assessment of parametric models using nonparametric methods. One vs. All and All vs. All multiclass classification, optional class probabilities adjustment. Nonparametric regression (k-NN) for general dimension, local-linear option. Nonlinear regression with Eickert-White method for dealing with heteroscedasticity. Utilities for converting time series to rectangular form. Utilities for conversion between factors and indicator variables. Some code related to "Statistical Regression and Classification: from Linear Models to Machine Learning", N. Matloff, 2017, CRC, ISBN 9781498710916.
Estimation of both single- and multiple-assignment Regression Discontinuity Designs (RDDs). Provides both parametric (global) and non-parametric (local) estimation choices for both sharp and fuzzy designs, along with power analysis and assumption checks. Introductions to the underlying logic and analysis of RDDs are in Thistlethwaite, D. L., Campbell, D. T. (1960) <doi:10.1037/h0044319> and Lee, D. S., Lemieux, T. (2010) <doi:10.1257/jel.48.2.281>.
This package provides a fast and elegant time series visualization package. In addition to the standard R plot types, this package supports candle sticks, open-high-low-close, and volume plots. Useful for visualizing any time series data, e.g., stock prices and technical indicators.
This package provides a collection of palettes designed to integrate with ggplot', reflecting the color schemes associated with ConesaLab'.