Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This R package provides a suite of tools to evaluate clustering algorithms, clusterings, and individual clusters.
This package provides an arsenal of R functions for large-scale statistical summaries, which are streamlined to work within the latest reporting tools in R and RStudio and which use formulas and versatile summary statistics for summary tables and models. The primary functions include
tableby, a Table-1-like summary of multiple variable types by the levels of one or more categorical variables;paired, a Table-1-like summary of multiple variable types paired across two time points;modelsum, which performs simple model fits on one or more endpoints for many variables (univariate or adjusted for covariates);freqlist, a powerful frequency table across many categorical variables;comparedf, a function for comparingdata.frames; andwrite2, a function to output tables to a document.
This package provides tooling to group dates by a variety of periods including: yearly, monthly, by second, by week of the month, and more. The groups are defined in such a way that they also represent the distance between dates in terms of the period. This extracts valuable information that can be used in further calculations that rely on a specific temporal spacing between observations.
This package provides functions for the quality control, homogenization and missing data infilling of climatological series, and to obtain climatological summaries and grids from the results. Also functions to draw wind-roses and Walter&Lieth climate diagrams are included.
This package generates well-known integer sequences. The gmp package is adopted for computing with arbitrarily large numbers. Every function has a hyperlink to its corresponding item in the On-Line Encyclopedia of Integer Sequences (OEIS) in the function help page.
Lambert W x F distributions are a generalized framework to analyze skewed, heavy-tailed data. It is based on an input/output system, where the output random variable (RV) Y is a non-linearly transformed version of an input RV X ~ F with similar properties as X, but slightly skewed (heavy-tailed). The transformed RV Y has a Lambert W x F distribution. This package contains functions to model and analyze skewed, heavy-tailed data the Lambert Way: simulate random samples, estimate parameters, compute quantiles, and plot/ print results nicely. The most useful function is Gaussianize, which works similarly to scale, but actually makes the data Gaussian. A do-it-yourself toolkit allows users to define their own Lambert W x MyFavoriteDistribution and use it in their analysis right away.
This package provides functions for creating plots and image files in a unified way regardless of output format (EPS, PDF, PNG, SVG, TIFF, WMF, etc.). Default device options as well as scales and aspect ratios are controlled in a uniform way across all device types. Switching output format requires minimal changes in code. This package is ideal for large-scale batch processing, because it will never leave open graphics devices or incomplete image files behind, even on errors or user interrupts.
This package enables the translation of ggplot2 graphs to an interactive web-based version and/or the creation of custom web-based visualizations directly from R. Once uploaded to a plotly account, plotly graphs (and the data behind them) can be viewed and modified in a web browser.
This package provides an efficient implementation of the K-Means++ algorithm. For more information see (1) "kmeans++ the advantages of the k-means++ algorithm" by David Arthur and Sergei Vassilvitskii (2007), Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, pp. 1027-1035, and (2) "The Effectiveness of Lloyd-Type Methods for the k-Means Problem" by Rafail Ostrovsky, Yuval Rabani, Leonard J. Schulman and Chaitanya Swamy <doi:10.1145/2395116.2395117>.
Dunn's test computes stochastic dominance & reports pairwise comparisons. This is done following a Kruskal-Wallis test (Kruskal and Wallis, 1952). It employs Dunn's z-test-statistic approximations for rank statistics, conducting k(k-1)/2 comparisons. The null hypothesis assumes that the probability of a randomly selected value from the first group being larger than one from the second group is one half, similar to the Wilcoxon-Mann-Whitney test. Dunn's test serves as a test for median difference and takes into account tied ranks.
This package provides functions for making low-level API requests to Amazon Web Services. The functions handle building, signing, and sending requests, and receiving responses. They are designed to help build higher-level interfaces to individual services, such as Simple Storage Service (S3).
This package implements fast OpenMP parallel computing of Breiman's random forests for survival, competing risks, regression and classification based on Ishwaran and Kogalur's popular random survival forests (RSF) package. It handles missing data and now includes multivariate, unsupervised forests, quantile regression and solutions for class imbalanced data. It provides a fast interface using subsampling and confidence regions for variable importance.
This package contains functionality for importing and managing of downloaded genome annotation data from the Ensembl genome browser (European Bioinformatics Institute) and from the UCSC genome browser (University of California, Santa Cruz) and annotation routines for genomic positions and splice site positions.
This package provides interactive, configurable and graphics visualization of the chromosome regions of any living organism allowing users to map chromosome elements (like genes, SNPs etc.) on the chromosome plot. It introduces a special plot viz. the "chromosome heatmap" that, in addition to mapping elements, can visualize the data associated with chromosome elements (like gene expression) in the form of heat colors. Users can investigate the detailed information about the mappings (like gene names or total genes mapped on a location) or can view the magnified single or double stranded view of the chromosome at a location showing each mapped element in sequential order. The package provide multiple features like visualizing multiple sets, chromosome heat-maps, group annotations, adding hyperlinks, and labelling. The plots can be saved as HTML documents that can be customized and shared easily. In addition, you can include them in R Markdown or in R Shiny applications.
This package provides alluvial plots for ggplot2. Alluvial plots use variable-width ribbons and stacked bar plots to represent multi-dimensional or repeated-measures data with categorical or ordinal variables.
Phylogenetic clustering (phyloclustering) is an evolutionary continuous time Markov Chain model-based approach to identify population structure from molecular data without assuming linkage equilibrium. The package phyclust provides a convenient implementation of phyloclustering for DNA and SNP data, capable of clustering individuals into subpopulations and identifying molecular sequences representative of those subpopulations. It is designed in C for performance and interfaced with R for visualization.
Functions implemented in this package allow coercing (i.e. convert) network data between classes provided by other R packages. Currently supported classes are those defined in packages network and igraph.
This package provides functions for computing the density and the distribution function of multivariate normal and "t" random variables, and for generating random vectors sampled from these distributions. Probabilities are computed via non-Monte Carlo methods.
This package provides procedures for fitting a principal curve to a data matrix in arbitrary dimensions.
This package provides miscellaneous functions commonly used in other packages maintained by Yihui Xie.
This package provides data used as examples to demonstrate GAMLSS models.
This package provides helpers for reordering factor levels (including moving specified levels to front, ordering by first appearance, reversing, and randomly shuffling), and tools for modifying factor levels (including collapsing rare levels into other, "anonymizing", and manually "recoding").
This package includes tools for marginal maximum likelihood estimation and joint maximum likelihood estimation for unidimensional and multidimensional item response models. The package functionality covers the Rasch model, 2PL model, 3PL model, generalized partial credit model, multi-faceted Rasch model, nominal item response model, structured latent class model, mixture distribution IRT models, and located latent class models. Latent regression models and plausible value imputation are also supported.
Fit Conway-Maxwell Poisson (COM-Poisson or CMP) regression models to count data (Sellers & Shmueli, 2010) <doi:10.1214/09-AOAS306>. The package provides functions for model estimation, dispersion testing, and diagnostics. Zero-inflated CMP regression (Sellers & Raim, 2016) <doi:10.1016/j.csda.2016.01.007> is also supported.