Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This is an annotation package for Illumina's EPIC methylation arrays.
This package extends the ggplot2 plotting system which implements a grammar of graphics. ggtree is designed for visualization and annotation of phylogenetic trees and other tree-like structures with their annotation data.
The package ASGSCA (Association Study using Generalized Structured Component Analysis) provides tools to model and test the association between multiple genotypes and multiple traits, taking into account the prior biological knowledge. Genes, and clinical pathways are incorporated in the model as latent variables.
ATAC-seq, an assay for Transposase-Accessible Chromatin using sequencing, is a rapid and sensitive method for chromatin accessibility analysis. It was developed as an alternative method to MNase-seq, FAIRE-seq and DNAse-seq. The ATACseqQC package was developed to help users to quickly assess whether their ATAC-seq experiment is successful. It includes diagnostic plots of fragment size distribution, proportion of mitochondria reads, nucleosome positioning pattern, and CTCF or other Transcript Factor footprints.
This package provides tools for quality control, analysis and visualization of Illumina DNA methylation array data.
This package provides tools to identify cell populations in Flow Cytometry data using non-parametric clustering and segmented-regression-based change point detection.
This package provides microarray data (from the Illumina Ref-8 BeadChips platform) and phenotype-level data from an epidemiological investigation of benzene exposure, packaged using SummarizedExperiemnt, for use as an example with the biotmle R package.
This package provides a dplyr-like interface for interacting with the common Bioconductor classes Ranges and GenomicRanges. By providing a grammatical and consistent way of manipulating these classes their accessibility for new Bioconductor users is hopefully increased.
This package provides standard formatting styles for Bioconductor PDF and HTML documents. Package vignettes illustrate use and functionality.
This package provides a data-driven test for the assumptions of quantile normalization using raw data such as objects that inherit eSets (e.g. ExpressionSet, MethylSet). Group level information about each sample (such as Tumor / Normal status) must also be provided because the test assesses if there are global differences in the distributions between the user-defined groups.
This package provides tools for processing short read data from ChIPseq experiments.
This package provides a Poisson mixture model is implemented to cluster genes from high-throughput transcriptome sequencing (RNA-seq) data. Parameter estimation is performed using either the EM or CEM algorithm, and the slope heuristics are used for model selection (i.e., to choose the number of clusters).
This package provides statistical methods for differential discovery analyses in high-dimensional cytometry data (including flow cytometry, mass cytometry or CyTOF, and oligonucleotide-tagged cytometry), based on a combination of high-resolution clustering and empirical Bayes moderated tests adapted from transcriptomics.
This package provides a pipeline for the analysis of GRO-seq data.
This package provides a set of tools and methods for making and manipulating transcript centric annotations. With these tools the user can easily download the genomic locations of the transcripts, exons and cds of a given organism, from either the UCSC Genome Browser or a BioMart database (more sources will be supported in the future). This information is then stored in a local database that keeps track of the relationship between transcripts, exons, cds and genes. Flexible methods are provided for extracting the desired features in a convenient format.
This package predicts functional relevance of protein-protein interactions based on functional annotations such as Human Protein Ontology and Gene Ontology, and prioritizes genes based on network topology, functional scores and a path search algorithm.
This package exposes an annotation database generated from Ensembl.
The method implemented in this package performs bottom-up hierarchical clustering, using a Dirichlet Process (infinite mixture) to model uncertainty in the data and Bayesian model selection to decide at each step which clusters to merge. This avoids several limitations of traditional methods, for example how many clusters there should be and how to choose a principled distance metric. This implementation accepts multinomial (i.e. discrete, with 2+ categories) or time-series data. This version also includes a randomised algorithm which is more efficient for larger data sets.
This package provides a package that provides a client interface to the Kyoto Encyclopedia of Genes and Genomes (KEGG) REST server.
This package provides the complete genome sequences for Homo sapiens as provided by UCSC (genome hg38, based on assembly GRCh38.p14 since 2023/01/31). The sequences are the same as in BSgenome.Hsapiens.UCSC.hg38, except that each of them has the 4 following masks on top:
the mask of assembly gaps (AGAPS mask);
the mask of intra-contig ambiguities (AMB mask);
the mask of repeats from
RepeatMasker(RM mask);the mask of repeats from Tandem Repeats Finder (TRF mask).
Only the AGAPS and AMB masks are "active" by default. The sequences are stored in MaskedDNAString objects.
This package implements a model of per-position sequencing bias in high-throughput sequencing data using a simple Bayesian network, the structure and parameters of which are trained on a set of aligned reads and a reference genome sequence.
BiFET identifies transcription factors (TFs) whose footprints are over-represented in target regions compared to background regions after correcting for the bias arising from the imbalance in read counts and GC contents between the target and background regions. For a given TF k, BiFET tests the null hypothesis that the target regions have the same probability of having footprints for the TF k as the background regions while correcting for the read count and GC content bias.
This package provides the data that were used in the http://quinlanlab.org/tutorials/bedtools/bedtools.html. It includes a subset of the DnaseI hypersensitivity data from "Maurano et al. Systematic Localization of Common Disease-Associated Variation in Regulatory DNA. Science. 2012. Vol. 337 no. 6099 pp. 1190-1195." The rest of the tracks were originally downloaded from the UCSC table browser. See the HelloRanges vignette for a port of the bedtools tutorial to R.
This package contains classes used in model-view-controller (MVC) design.