Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The online principal component method can process the online data set. The philosophy of the package is described in Guo G. (2018) <doi:10.1080/10485252.2018.1531130>.
This package provides a set of tools to extract bibliographic content from OpenAlex database using API <https://docs.openalex.org>.
Implementation of a procedure for generating samples from a mixed distribution of ordinal and normal random variables with a pre-specified correlation matrix and marginal distributions. The details of the method are explained in Demirtas et al. (2015) <DOI:10.1080/10543406.2014.920868>.
An R autograding extension for Otter-Grader (<https://otter-grader.readthedocs.io>). It supports grading R scripts, R Markdown documents, and R Jupyter Notebooks.
OD-means is a hierarchical adaptive k-means algorithm based on origin-destination pairs. In the first layer of the hierarchy, the clusters are separated automatically based on the variation of the within-cluster distance of each cluster until convergence. The second layer of the hierarchy corresponds to the sub clustering process of small clusters based on the distance between the origin and destination of each cluster.
Bayesian reconstruction of who infected whom during past outbreaks using routinely-collected surveillance data. Inference of transmission trees using genotype, age specific social contacts, distance between cases and onset dates of the reported cases. (Robert A, Kucharski AJ, Gastanaduy PA, Paul P, Funk S. (2020) <doi:10.1098/rsif.2020.0084>).
This package provides functions for estimating the overlapping area of two or more kernel density estimations from empirical data.
This package provides tools for collecting municipal-level data <http://www.transparencia.gov.br/swagger-ui.html> from several Brazilian governmental social programs.
Uses the outputs of a logistic regression model, from caret <https://CRAN.R-project.org/package=caret>, to build an odds plot. This allows for the rapid visualisation of odds plot ratios and works best with the outputs of CARET's GLM model class, by returning the final trained model.
This package provides functions for extracting text and tables from PDF-based order documents. It provides an n-gram-based approach for identifying the language of an order document. It furthermore uses R-package pdftools to extract the text from an order document. In the case that the PDF document is only including an image (because it is scanned document), R package tesseract is used for OCR. Furthermore, the package provides functionality for identifying and extracting order position tables in order documents based on a clustering approach.
The comprehensive knowledge of epigenetic modifications in plants, encompassing histone modifications in regulating gene expression, is not completely ingrained. It is noteworthy that histone deacetylation and histone H3 lysine 27 trimethylation (H3K27me3) play a role in repressing transcription in eukaryotes. In contrast, histone acetylation (H3K9ac) and H3K4me3 have been inevitably linked to the stimulation of gene expression, which significantly influences plant development and plays a role in plant responses to biotic and abiotic stresses. To our knowledge this the first multiclass classifier for predicting histone modification in plants. <doi:10.1186/s12864-019-5489-4>.
Calculates D-, Ds-, A-, I- and L-optimal designs for non-linear models, via an implementation of the cocktail algorithm (Yu, 2011, <doi:10.1007/s11222-010-9183-2>). Compares designs via their efficiency, and augments any design with a controlled efficiency. An efficient rounding function has been provided to transform approximate designs to exact designs.
Summarizes the taxonomic composition, diversity contribution of the rare and abundant community by using OTU (operational taxonomic unit) table which was generated by analyzing pipeline of QIIME or mothur'. The rare biosphere in this package is subset by the relative abundance threshold (for details about rare biosphere please see Lynch and Neufeld (2015) <doi:10.1038/nrmicro3400>).
This package performs robust cluster analysis allowing for outliers and noise that cannot be fitted by any cluster. The data are modelled by a mixture of Gaussian distributions and a noise component, which is an improper uniform distribution covering the whole Euclidean space. Parameters are estimated by (pseudo) maximum likelihood. This is fitted by a EM-type algorithm. See Coretto and Hennig (2016) <doi:10.1080/01621459.2015.1100996>, and Coretto and Hennig (2017) <https://jmlr.org/papers/v18/16-382.html>.
Reads data from Bruker OPUS binary files of Fourier-Transform infrared spectrometers of the company Bruker Optics GmbH & Co. This package is released independently from Bruker, and Bruker and OPUS are registered trademarks of Bruker Optics GmbH & Co. KG. <https://www.bruker.com/en/products-and-solutions/infrared-and-raman/opus-spectroscopy-software/latest-release.html>. It lets you import both measurement data and parameters from OPUS files. The main method is `read_opus()`, which reads one or multiple OPUS files into a standardized list class. Behind the scenes, the reader parses the file header for assigning spectral blocks and reading binary data from the respective byte positions, using a reverse engineering approach. Infrared spectroscopy combined with chemometrics and machine learning is an established method to scale up chemical diagnostics in various industries and scientific fields.
This package provides functions to access and download data from the Open Case Studies <https://www.opencasestudies.org/> repositories on GitHub <https://github.com/opencasestudies>. Different functions enable users to grab the data they need at different sections in the case study, as well as download the whole case study repository. All the user needs to do is input the name of the case study being worked on. The package relies on the httr::GET() function to access files through the GitHub API. The functions usethis::use_zip() and usethis::create_from_github() are used to clone and/or download the case study repositories. To cite an individual case study, please see the respective README file at <https://github.com/opencasestudies/>. <https://github.com/opencasestudies/ocs-bp-rural-and-urban-obesity> <https://github.com/opencasestudies/ocs-bp-air-pollution> <https://github.com/opencasestudies/ocs-bp-vaping-case-study> <https://github.com/opencasestudies/ocs-bp-opioid-rural-urban> <https://github.com/opencasestudies/ocs-bp-RTC-wrangling> <https://github.com/opencasestudies/ocs-bp-RTC-analysis> <https://github.com/opencasestudies/ocs-bp-youth-disconnection> <https://github.com/opencasestudies/ocs-bp-youth-mental-health> <https://github.com/opencasestudies/ocs-bp-school-shootings-dashboard> <https://github.com/opencasestudies/ocs-bp-co2-emissions> <https://github.com/opencasestudies/ocs-bp-diet>.
Perform a Bayesian estimation of the ordinal exploratory Higher-order General Diagnostic Model (OHOEGDM) for Polytomous Data described by Culpepper, S. A. and Balamuta, J. J. (2021) <doi:10.1080/00273171.2021.1985949>.
Intended to create standard human-in-the-loop validity tests for typical automated content analysis such as topic modeling and dictionary-based methods. This package offers a standard workflow with functions to prepare, administer and evaluate a human-in-the-loop validity test. This package provides functions for validating topic models using word intrusion, topic intrusion (Chang et al. 2009, <https://papers.nips.cc/paper/3700-reading-tea-leaves-how-humans-interpret-topic-models>) and word set intrusion (Ying et al. 2021) <doi:10.1017/pan.2021.33> tests. This package also provides functions for generating gold-standard data which are useful for validating dictionary-based methods. The default settings of all generated tests match those suggested in Chang et al. (2009) and Song et al. (2020) <doi:10.1080/10584609.2020.1723752>.
Implementation of the Open Perimetry Interface (OPI) for simulating and controlling visual field machines using R. The OPI is a standard for interfacing with visual field testing machines (perimeters) first started as an open source project with support of Haag-Streit in 2010. It specifies basic functions that allow many visual field tests to be constructed. As of February 2022 it is fully implemented on the Haag-Streit Octopus 900 and CrewT ImoVifa ('Topcon Tempo') with partial implementations on the Centervue Compass, Kowa AP 7000 and Android phones. It also has a cousin: the R package visualFields', which has tools for analysing and manipulating visual field data.
Identifies the optimal transformation of a surrogate marker and estimates the proportion of treatment explained (PTE) by the optimally-transformed surrogate at an earlier time point when the primary outcome of interest is a censored time-to-event outcome; details are described in Wang et al (2021) <doi:10.1002/sim.9185>.
Use optimization to estimate weights that balance covariates for binary, multi-category, continuous, and multivariate treatments in the spirit of Zubizarreta (2015) <doi:10.1080/01621459.2015.1023805>. The degree of balance can be specified for each covariate. In addition, sampling weights can be estimated that allow a sample to generalize to a population specified with given target moments of covariates, as in matching-adjusted indirect comparison (MAIC).
This package provides a wrapper for optim for nonlinear regression problems; see Nocedal J and Write S (2006, ISBN: 978-0387-30303-1). Performs ordinary least squares (OLS), iterative re-weighted least squares (IRWLS), and maximum likelihood (MLE). Also includes the robust outlier detection (ROUT) algorithm; see Motulsky, H and Brown, R (2006) <doi:10.1186/1471-2105-7-123>.
This package provides a visualization tool for multivariate data. This package maintains the original functionality of a radar chart and avoids potential misuse of its connected regions, with newly added features to better assist multi-criteria decision-making.
Clinical reports generated by Oncomine Reporter software contain critical data in unstructured PDF format, making manual extraction time-consuming and error-prone. ORscraper provides a coherent suite of functions to automate this process, allowing researchers to parse reports, identify key biomarkers, extract genetic variant tables, and filter results. It also integrates with the NCBI ClinVar API <https://www.ncbi.nlm.nih.gov/clinvar/> to enrich extracted data.