Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions to create confidence intervals for ratios of Poisson rates under misclassification using double sampling. Implementations of the methods described in Kahle, D., P. Young, B. Greer, and D. Young (2016). "Confidence Intervals for the Ratio of Two Poisson Rates Under One-Way Differential Misclassification Using Double Sampling." Computational Statistics & Data Analysis, 95:122รข 132.
Consists of custom wrapper functions using packages openxlsx', flextable', and officer to create highly formatted MS office friendly output of your data frames. These viewer friendly outputs are intended to match expectations of professional looking presentations in business and consulting scenarios. The functions are opinionated in the sense that they expect the input data frame to have certain properties in order to take advantage of the automated formatting.
This package implements partition-assisted clustering and multiple alignments of networks. It 1) utilizes partition-assisted clustering to find robust and accurate clusters and 2) discovers coherent relationships of clusters across multiple samples. It is particularly useful for analyzing single-cell data set. Please see Li et al. (2017) <doi:10.1371/journal.pcbi.1005875> for detail method description.
Allows for data to be transformed before using it to construct models. Builds structures to allow functions in the PMML package to output transformation details in addition to the model in the resulting PMML file. The Predictive Model Markup Language (PMML) is an XML-based language which provides a way for applications to define machine learning, statistical and data mining models and to share models between PMML compliant applications. More information about the PMML industry standard and the Data Mining Group can be found at <http://www.dmg.org>. The generated PMML can be imported into any PMML consuming application, such as Zementis Predictive Analytics products, which integrate with web services, relational database systems and deploy natively on Hadoop in conjunction with Hive, Spark or Storm, as well as allow predictive analytics to be executed for IBM z Systems mainframe applications and real-time, streaming analytics platforms.
Utility functions for the handling, analysis and visualisation of data from portable emissions measurement systems ('PEMS') and other similar mobile activity monitoring devices. The package includes a dedicated pems data class that manages many of the quality control, unit handling and data archiving issues that can hinder efforts to standardise PEMS research.
This package provides functions and graphics for projecting daily incidence based on past incidence, and estimates of the serial interval and reproduction number. Projections are based on a branching process using a Poisson-distributed number of new cases per day, similar to the model used for estimating R in EpiEstim or in earlyR', and described by Nouvellet et al. (2017) <doi:10.1016/j.epidem.2017.02.012>. The package provides the S3 class projections which extends matrix', with accessors and additional helpers for handling, subsetting, merging, or adding these objects, as well as dedicated printing and plotting methods.
Routines for state estimate in a linear Gaussian state space model and a simple stochastic volatility model using particle filtering. Parameter inference is also carried out in these models using the particle Metropolis-Hastings algorithm that includes the particle filter to provided an unbiased estimator of the likelihood. This package is a collection of minimal working examples of these algorithms and is only meant for educational use and as a start for learning to them on your own.
Fit a time-series model to a crop phenology data, such as time-series rice canopy height. This package returns the model parameters as the summary statistics of crop phenology, and these parameters will be useful to characterize the growth pattern of each cultivar and predict manually-measured traits, such as days to heading and biomass. Please see Taniguchi et al. (2022) <doi:10.3389/fpls.2022.998803> and Taniguchi et al. (2025) <doi: 10.3389/frai.2024.1477637> for detail. This package has been designed for scientific use. Use for commercial purposes shall not be allowed.
Implementations of several methods for principal component analysis using the L1 norm. The package depends on COIN-OR Clp version >= 1.17.4. The methods implemented are PCA-L1 (Kwak 2008) <DOI:10.1109/TPAMI.2008.114>, L1-PCA (Ke and Kanade 2003, 2005) <DOI:10.1109/CVPR.2005.309>, L1-PCA* (Brooks, Dula, and Boone 2013) <DOI:10.1016/j.csda.2012.11.007>, L1-PCAhp (Visentin, Prestwich and Armagan 2016) <DOI:10.1007/978-3-319-46227-1_37>, wPCA (Park and Klabjan 2016) <DOI: 10.1109/ICDM.2016.0054>, awPCA (Park and Klabjan 2016) <DOI: 10.1109/ICDM.2016.0054>, PCA-Lp (Kwak 2014) <DOI:10.1109/TCYB.2013.2262936>, and SharpEl1-PCA (Brooks and Dula, submitted).
Conduct a noncompartmental analysis as closely as possible to the most widely used commercial software. Some features are 1) CDISC SDTM terms 2) Automatic slope selection with the same criterion of WinNonlin(R) 3) Supporting both linear-up linear-down and linear-up log-down method 4) Interval(partial) AUCs with linear or log interpolation method * Reference: Gabrielsson J, Weiner D. Pharmacokinetic and Pharmacodynamic Data Analysis - Concepts and Applications. 5th ed. 2016. (ISBN:9198299107).
Can be used to carry out permutation based gene expression pathway analysis. This work was supported by a National Institute of Allergy and Infectious Disease/National Institutes of Health contract (No. HHSN272200900059C).
There are a lot of different typical tasks that have to be solved during phonetic research and experiments. This includes creating a presentation that will contain all stimuli, renaming and concatenating multiple sound files recorded during a session, automatic annotation in Praat TextGrids (this is one of the sound annotation standards provided by Praat software, see Boersma & Weenink 2020 <https://www.fon.hum.uva.nl/praat/>), creating an html table with annotations and spectrograms, and converting multiple formats ('Praat TextGrid, ELAN', EXMARaLDA', Audacity', subtitles .srt', and FLEx flextext). All of these tasks can be solved by a mixture of different tools (any programming language has programs for automatic renaming, and Praat contains scripts for concatenating and renaming files, etc.). phonfieldwork provides a functionality that will make it easier to solve those tasks independently of any additional tools. You can also compare the functionality with other packages: rPraat <https://CRAN.R-project.org/package=rPraat>, textgRid <https://CRAN.R-project.org/package=textgRid>.
Utilities for the Pareto, piecewise Pareto and generalized Pareto distribution that are useful for reinsurance pricing. In particular, the package provides a non-trivial algorithm that can be used to match the expected losses of a tower of reinsurance layers with a layer-independent collective risk model. The theoretical background of the matching algorithm and most other methods are described in Ulrich Riegel (2018) <doi:10.1007/s13385-018-0177-3>.
This package provides a PNAS'-alike style for rmarkdown', derived from the Proceedings of the National Academy of Sciences of the United States of America ('PNAS') LaTeX style, and adapted for use with markdown and pandoc'.
Search for R packages on CRAN directly from the R console, based on the packages titles, short and long descriptions, or other fields. Combine multiple keywords with logical operators ('and', or'), view detailed information on any package and keep track of the latest package contributions to CRAN. If you don't want to search from the R console, use the comfortable R Studio add-in.
Enhanced RTF wrapper written in R for use with existing R tables packages such as Huxtable or GT'. This package fills a gap where tables in certain packages can be written out to RTF, but cannot add certain metadata or features to the document that are required/expected in a report for a regulatory submission, such as multiple levels of titles and footnotes, making the document landscape, and controlling properties such as margins.
Reconstruct pedigrees from genotype data, by optimising the likelihood over all possible pedigrees subject to given restrictions. Tailor-made plots facilitate evaluation of the output. This package is part of the pedsuite ecosystem for pedigree analysis. In particular, it imports pedprobr for calculating pedigree likelihoods and forrel for estimating pairwise relatedness.
This package provides a customisable R shiny app for immersively visualising, mapping and annotating panospheric (360 degree) imagery. The flexible interface allows annotation of any geocoded images using up to 4 user specified dropdown menus. The app uses leaflet to render maps that display the geo-locations of images and panellum <https://pannellum.org/>, a lightweight panorama viewer for the web, to render images in virtual 360 degree viewing mode. Key functions include the ability to draw on & export parts of 360 images for downstream applications. Users can also draw polygons and points on map imagery related to the panoramic images and export them for further analysis. Downstream applications include using annotations to train Artificial Intelligence/Machine Learning (AI/ML) models and geospatial modelling and analysis of camera based survey data.
Estimates when and where a model-guided treatment strategy may outperform a treat-all or treat-none approach by Monte Carlo simulation and evaluation of the Net Monetary Benefit. Details can be viewed in Parsons et al. (2023) <doi:10.21105/joss.05328>.
This package provides a shiny app that supports merging of PDF and/or image files with page selection, removal, or rotation options. It is a fast, free, and secure alternative to commercial software or various online websites which require users to sign-up, and it avoids any potential risks associated with uploading files elsewhere.
Visualize the partitions of simple decision trees, involving one or two predictors, on the scale of the original data. Provides an intuitive alternative to traditional tree diagrams, by visualizing how a decision tree divides the predictor space in a simple 2D plot alongside the original data. The parttree package supports both classification and regression trees from rpart and partykit', as well as trees produced by popular frontend systems like tidymodels and mlr3'. Visualization methods are provided for both base R graphics and ggplot2'.
Compiles functions to trim, bin, visualise, and analyse activity/sleep time-series data collected from the Drosophila Activity Monitor (DAM) system (Trikinetics, USA). The following methods were used to compute periodograms - Chi-square periodogram: Sokolove and Bushell (1978) <doi:10.1016/0022-5193(78)90022-X>, Lomb-Scargle periodogram: Lomb (1976) <doi:10.1007/BF00648343>, Scargle (1982) <doi:10.1086/160554> and Ruf (1999) <doi:10.1076/brhm.30.2.178.1422>, and Autocorrelation: Eijzenbach et al. (1986) <doi:10.1111/j.1440-1681.1986.tb00943.x>. Identification of activity peaks is done after using a Savitzky-Golay filter (Savitzky and Golay (1964) <doi:10.1021/ac60214a047>) to smooth raw activity data. Three methods to estimate anticipation of activity are used based on the following papers - Slope method: Fernandez et al. (2020) <doi:10.1016/j.cub.2020.04.025>, Harrisingh method: Harrisingh et al. (2007) <doi:10.1523/JNEUROSCI.3680-07.2007>, and Stoleru method: Stoleru et al. (2004) <doi:10.1038/nature02926>. Rose plots and circular analysis are based on methods from - Batschelet (1981) <ISBN:0120810506> and Zar (2010) <ISBN:0321656865>.
It aggregates protein panel data and metadata for protein quantitative trait locus (pQTL) analysis using pQTLtools (<https://jinghuazhao.github.io/pQTLtools/>). The package includes data from affinity-based panels such as Olink (<https://olink.com/>) and SomaScan (<https://somalogic.com/>), as well as mass spectrometry-based panels from CellCarta (<https://cellcarta.com/>) and Seer (<https://seer.bio/>). The metadata encompasses updated annotations and publication details.
This package provides a cohesive framework for the spectral and spatial analysis of colour described in Maia, Eliason, Bitton, Doucet & Shawkey (2013) <doi:10.1111/2041-210X.12069> and Maia, Gruson, Endler & White (2019) <doi:10.1111/2041-210X.13174>.