Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The Jalaali calendar, also known as the Persian or Solar Hijri calendar, is the official calendar of Iran and Afghanistan. It starts on Nowruz, the spring equinox, and follows an astronomical system for determining leap years. Each year consists of 365 or 366 days, divided into 12 months. This package provides functions for converting dates between the Jalaali and Gregorian calendars. The conversion calculations are based on the work of Kazimierz M. Borkowski (1996) (<doi:10.1007/BF00055188>), who used an analytical model of Earth's motion to compute equinoxes from AD 550 to 3800 and determine leap years based on Tehran time.
Rcpp implementation of the multivariate Kalman filter for state space models that can handle missing values and exogenous data in the observation and state equations. There is also a function to handle time varying parameters. Kim, Chang-Jin and Charles R. Nelson (1999) "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications" <doi:10.7551/mitpress/6444.001.0001><http://econ.korea.ac.kr/~cjkim/>.
This package provides a spatial smoothing algorithm based on convolutions of finite rectangular kernels that provides sharp resolution in the presence of high levels of noise.
This package provides fast implementations of kernel smoothing techniques for bivariate copula densities, in particular density estimation and resampling, see Nagler (2018) <doi:10.18637/jss.v084.i07>.
Assists researchers in choosing Key Opinion Leaders (KOLs) in a network to help disseminate or encourage adoption of an innovation by other network members. Potential KOL teams are evaluated using the ABCDE framework (Neal et al., 2025 <doi:10.31219/osf.io/3vxy9_v1>). This framework which considers: (1) the team members Availability, (2) the Breadth of the team's network coverage, (3) the Cost of recruiting a team of a given size, and (4) the Diversity of the team's members, (5) which are pooled into a single Evaluation score.
Kendall random walks are a continuous-space Markov chains generated by the Kendall generalized convolution. This package provides tools for simulating these random walks and studying distributions related to them. For more information about Kendall random walks see Jasiulis-GoÅ dyn (2014) <arXiv:1412.0220>.
Fits nonparametric item and option characteristic curves using kernel smoothing. It allows for optimal selection of the smoothing bandwidth using cross-validation and a variety of exploratory plotting tools. The kernel smoothing is based on methods described in Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. Chapman & Hall, London.
This package provides tools for applying Krippendorff's Alpha methodology <DOI:10.1080/19312450709336664>. Both the customary methodology and Hughes methodology <DOI:10.48550/arXiv.2210.13265> are supported, the former being preferred for larger datasets, the latter for smaller datasets. The framework supports common and user-defined distance functions, and can accommodate any number of units, any number of coders, and missingness. Interval estimation can be done in parallel for either methodology.
The computational complexity of the implemented algorithm for Kendall's correlation is O(n log(n)), which is faster than the base R implementation with a computational complexity of O(n^2). For small vectors (i.e., less than 100 observations), the time difference is negligible. However, for larger vectors, the speed difference can be substantial and the numerical difference is minimal. The references are Knight (1966) <doi:10.2307/2282833>, Abrevaya (1999) <doi:10.1016/S0165-1765(98)00255-9>, Christensen (2005) <doi:10.1007/BF02736122> and Emara (2024) <https://learningcpp.org/>. This implementation is described in Vargas Sepulveda (2025) <doi:10.1371/journal.pone.0326090>.
It predicts any attribute (categorical) given a set of input numeric predictor values. Note that only numeric input predictors should be given. The k value can be chosen according to accuracies provided. The attribute to be predicted can be selected from the dropdown provided (select categorical attribute). This is because categorical attributes cannot be given as inputs here. A handsontable is also provided to enter the input predictor values.
The sampl.mcmc function creates samples of the feasible region of a knapsack problem with both equalities and inequalities constraints.
Decrypts passwords stored in the Gnome Keyring, macOS Keychain and strings encrypted with the Windows Data Protection API.
Interface to Keras <https://keras.io>, a high-level neural networks API. Keras was developed with a focus on enabling fast experimentation, supports both convolution based networks and recurrent networks (as well as combinations of the two), and runs seamlessly on both CPU and GPU devices.
Write beautiful yet customizable letters in R Markdown and directly obtain the finished PDF. Smooth generation of PDFs is realized by rmarkdown', the pandoc-letter template and the KOMA-Script letter class. KOMA-Script provides enhanced replacements for the standard LaTeX classes with emphasis on typography and versatility. KOMA-Script is particularly useful for international writers as it handles various paper formats well, provides layouts for many common window envelope types (e.g. German, US, French, Japanese) and lets you define your own layouts. The package comes with a default letter layout based on DIN 5008B'.
Kernel Fisher Discriminant Analysis (KFDA) is performed using Kernel Principal Component Analysis (KPCA) and Fisher Discriminant Analysis (FDA). There are some similar packages. First, lfda is a package that performs Local Fisher Discriminant Analysis (LFDA) and performs other functions. In particular, lfda seems to be impossible to test because it needs the label information of the data in the function argument. Also, the ks package has a limited dimension, which makes it difficult to analyze properly. This package is a simple and practical package for KFDA based on the paper of Yang, J., Jin, Z., Yang, J. Y., Zhang, D., and Frangi, A. F. (2004) <DOI:10.1016/j.patcog.2003.10.015>.
An implementation of the blocking algorithm KLSH in Steorts, Ventura, Sadinle, Fienberg (2014) <DOI:10.1007/978-3-319-11257-2_20>, which is a k-means variant of locality sensitive hashing. The method is illustrated with examples and a vignette.
This package provides functions to implement K Nearest Neighbor forecasting using a weighted similarity metric tailored to the problem of forecasting univariate time series where recent observations, seasonal patterns, and exogenous predictors are all relevant in predicting future observations of the series in question. For more information on the formulation of this similarity metric please see Trupiano (2021) <arXiv:2112.06266>.
Kernel Machine Score Test for Pathway Analysis in the Presence of Semi-Competing Risks. Method is detailed in: Neykov, Hejblum & Sinnott (2018) <doi: 10.1177/0962280216653427>.
Application of a Known Biomass Production Model (KBPM): (1) the fitting of KBPM to each stock; (2) the estimation of the effects of environmental variability; (3) the retrospective analysis to identify regime shifts; (4) the estimation of forecasts. For more details see Schaefer (1954) <https://www.iattc.org/GetAttachment/62d510ee-13d0-40f2-847b-0fde415476b8/Vol-1-No-2-1954-SCHAEFER,-MILNER-B-_Some-aspects-of-the-dynamics-of-populations-important-to-the-management-of-the-commercial-marine-fisheries.pdf>, Pella and Tomlinson (1969) <https://www.iattc.org/GetAttachment/9865079c-6ee7-40e2-9e30-c4523ff81ddf/Vol-13-No-3-1969-PELLA,-JEROME-J-,-and-PATRICK-K-TOMLINSON_A-generalized-stock-production-model.pdf> and MacCall (2002) <doi:10.1577/1548-8675(2002)022%3C0272:UOKBPM%3E2.0.CO;2>.
This package provides a comprehensive R interface to access data from the Kraken cryptocurrency exchange REST API <https://docs.kraken.com/api/>. It allows users to retrieve various market data, such as asset information, trading pairs, and price data. The package is designed to facilitate efficient data access for analysis, strategy development, and monitoring of cryptocurrency market trends.
New kernel-based test and fast tests for testing whether two samples are from the same distribution. They work well particularly for high-dimensional data. Song, H. and Chen, H. (2023) <arXiv:2011.06127>.
Prediction with k* nearest neighbor algorithm based on a publication by Anava and Levy (2016) <arXiv:1701.07266>.
State space modelling is an efficient and flexible framework for statistical inference of a broad class of time series and other data. KFAS includes computationally efficient functions for Kalman filtering, smoothing, forecasting, and simulation of multivariate exponential family state space models, with observations from Gaussian, Poisson, binomial, negative binomial, and gamma distributions. See the paper by Helske (2017) <doi:10.18637/jss.v078.i10> for details.
Cubic spline fitting along with knot selection, includes support for additional variables.