Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The Structstrings package implements the widely used dot bracket annotation for storing base pairing information in structured RNA. Structstrings uses the infrastructure provided by the Biostrings package and derives the DotBracketString and related classes from the BString class. From these, base pair tables can be produced for in depth analysis. In addition, the loop indices of the base pairs can be retrieved as well. For better efficiency, information conversion is implemented in C, inspired to a large extend by the ViennaRNA package.
This package provides raw data objects for the Illumina 450k DNA methylation microarrays, and an object depicting which CpGs on the array are associated with cell type.
The data consist of microarrays from 128 different individuals with acute lymphoblastic leukemia (ALL). A number of additional covariates are available. The data have been normalized (using rma) and it is the jointly normalized data that are available here. The data are presented in the form of an exprSet object.
This package provides processed 22 samples from BrainSpan keeping only the information for chromosome 21. Data is stored in the BigWig format and is used for examples in other packages.
This package provides tools to accurately estimate cell type abundances from heterogeneous bulk expression. A reference-based method utilizes single-cell information to generate a signature matrix and transformation of bulk expression for accurate regression based estimates. A marker-based method utilizes known cell-specific marker genes to measure relative abundances across samples.
This package is used for the identification and validation of sequence motifs. It makes use of STAMP for comparing a set of motifs to a given database (e.g. JASPAR). It can also be used to visualize motifs, motif distributions, modules and filter motifs.
This package provides functions that are needed by many other packages on Bioconductor or which replace R functions.
EpiDISH is a R package to infer the proportions of a priori known cell-types present in a sample representing a mixture of such cell-types. Right now, the package can be used on DNAm data of whole blood, generic epithelial tissue and breast tissue. Besides, the package provides a function that allows the identification of differentially methylated cell-types and their directionality of change in Epigenome-Wide Association Studies.
This package is an automatically generated RnBeads annotation package for the assembly hg19.
This package provides example datasets that represent 'real world examples' of Affymetrix data, unlike the artificial examples included in the package affy.
This package provides R environments for the annotation of microarrays.
This package provides a dplyr-like interface for interacting with the common Bioconductor classes Ranges and GenomicRanges. By providing a grammatical and consistent way of manipulating these classes their accessibility for new Bioconductor users is hopefully increased.
The aim of XINA is to determine which proteins exhibit similar patterns within and across experimental conditions, since proteins with co-abundance patterns may have common molecular functions. XINA imports multiple datasets, tags dataset in silico, and combines the data for subsequent subgrouping into multiple clusters. The result is a single output depicting the variation across all conditions. XINA not only extracts coabundance profiles within and across experiments, but also incorporates protein-protein interaction databases and integrative resources such as Kyoto encyclopedia of genes and genomes (KEGG) to infer interactors and molecular functions, respectively, and produces intuitive graphical outputs.
The affyILM package is a preprocessing tool which estimates gene expression levels for Affymetrix Gene Chips. Input from physical chemistry is employed to first background subtract intensities before calculating concentrations on behal of the Langmuir model.
This package implements functions to retrieve the nearest genes around the peak, annotate genomic region of the peak, statstical methods for estimate the significance of overlap among ChIP peak data sets, and incorporate GEO database for user to compare the own dataset with those deposited in database. The comparison can be used to infer cooperative regulation and thus can be used to generate hypotheses. Several visualization functions are implemented to summarize the coverage of the peak experiment, average profile and heatmap of peaks binding to TSS regions, genomic annotation, distance to TSS, and overlap of peaks or genes.
This package is a computational tool box for radio-genomic analysis which integrates radio-response data, radio-biological modelling and comprehensive cell line annotations for hundreds of cancer cell lines. The RadioSet class enables creation and manipulation of standardized datasets including information about cancer cells lines, radio-response assays and dose-response indicators. Included methods allow fitting and plotting dose-response data using established radio-biological models along with quality control to validate results. Additional functions related to fitting and plotting dose response curves, quantifying statistical correlation and calculating AUC or SF are included.
This package provides rna-seq datasets from The Cancer Genome Atlas Project for all cohorts types from http://gdac.broadinstitute.org/. The Rna-seq data format is explained here https://wiki.nci.nih.gov/display/TCGA/RNASeq+Version+2. The data source is Illumina hiseq Level 3 RSEM normalized expression data from 2015-11-01 snapshot.
This package provides more than 2000 annotated position frequency matrices from nine public sources, for multiple organisms.
The polyester package simulates RNA-seq reads from differential expression experiments with replicates. The reads can then be aligned and used to perform comparisons of methods for differential expression.
This package provides various wrapper functions that have been written to streamline the more common analyses that a Biostatistician might see.
This package provides user interface and database connection code for annotation data packages using SQLite data storage.
This package provides a collection of tools for cancer genomic data clustering analyses, including those for single cell RNA-seq. Cell clustering and feature gene selection analysis employ Bayesian (and maximum likelihood) non-negative matrix factorization (NMF) algorithm. Input data set consists of RNA count matrix, gene, and cell bar code annotations. Analysis outputs are factor matrices for multiple ranks and marginal likelihood values for each rank. The package includes utilities for downstream analyses, including meta-gene identification, visualization, and construction of rank-based trees for clusters.
The package alpine helps to model bias parameters and then using those parameters to estimate RNA-seq transcript abundance. Alpine is a package for estimating and visualizing many forms of sample-specific biases that can arise in RNA-seq, including fragment length distribution, positional bias on the transcript, read start bias (random hexamer priming), and fragment GC-content (amplification). It also offers bias-corrected estimates of transcript abundance in FPKM(Fragments Per Kilobase of transcript per Million mapped reads). It is currently designed for un-stranded paired-end RNA-seq data.
The package provides two frameworks. One for the differential transcript usage analysis between different conditions and one for the tuQTL analysis. Both are based on modeling the counts of genomic features (i.e., transcripts) with the Dirichlet-multinomial distribution. The package also makes available functions for visualization and exploration of the data and results.