Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements a variety of methods for batch correction of single-cell (RNA sequencing) data. This includes methods based on detecting mutually nearest neighbors, as well as several efficient variants of linear regression of the log-expression values. Functions are also provided to perform global rescaling to remove differences in depth between batches, and to perform a principal components analysis that is robust to differences in the numbers of cells across batches.
Vizualize, analyze and explore networks using Cytoscape via R. Anything you can do using the graphical user interface of Cytoscape, you can now do with a single RCy3 function.
This package provides functions necessary to perform Weighted Correlation Network Analysis on high-dimensional data. It includes functions for rudimentary data cleaning, construction and summarization of correlation networks, module identification and functions for relating both variables and modules to sample traits. It also includes a number of utility functions for data manipulation and visualization.
This package provides functions for pathway analysis based on the REACTOME pathway database. It implements enrichment analysis, gene set enrichment analysis and several functions for visualization.
This package provides tools to efficiently represent and manipulate genomic annotations and alignments is playing a central role when it comes to analyzing high-throughput sequencing data (a.k.a. NGS data). The GenomicRanges package defines general purpose containers for storing and manipulating genomic intervals and variables defined along a genome.
This package implements an approach for scanning the genome to detect and perform accurate inference on differentially methylated regions from Whole Genome Bisulfite Sequencing data. The method is based on comparing detected regions to a pooled null distribution, that can be implemented even when as few as two samples per population are available. Region-level statistics are obtained by fitting a generalized least squares (GLS) regression model with a nested autoregressive correlated error structure for the effect of interest on transformed methylation proportions.
This package implements an expiration system for access to versioned directories. Directories that have not been accessed by a registered function within a certain time frame are deleted. This aims to reduce disk usage by eliminating obsolete caches generated by old versions of packages.
The package enables a simple unified interface to several annotation packages each of which has its own schema by taking advantage of the fact that each of these packages implements a select methods.
This package provides an R wrapper around the popular bowtie short read aligner and around SpliceMap, a de novo splice junction discovery and alignment tool.
This is the classification package for the automated analysis of Affymetrix arrays.
MultiBaC is a strategy to correct batch effects from multiomic datasets distributed across different labs or data acquisition events. MultiBaC is able to remove batch effects across different omics generated within separate batches provided that at least one common omic data type is included in all the batches considered.
This package provides a function to impute missing gene expression microarray data, using nearest neighbor averaging.
This package provides functionalities for downstream analysis, annotation and visualizaton of alternative splicing events generated by rMATS.
This is the human disease ontology R package HDO.db, which provides the semantic relationship between human diseases. Relying on the DOSE and GOSemSim packages, this package can carry out disease enrichment and semantic similarity analyses. Many biological studies are achieved through mouse models, and a large number of data indicate the association between genotypes and phenotypes or diseases. The study of model organisms can be transformed into useful knowledge about normal human biology and disease to facilitate treatment and early screening for diseases. Organism-specific genotype-phenotypic associations can be applied to cross-species phenotypic studies to clarify previously unknown phenotypic connections in other species. Using the same principle to diseases can identify genetic associations and even help to identify disease associations that are not obvious.
AUCell identifies cells with active gene sets (e.g. signatures, gene modules, etc) in single-cell RNA-seq data. AUCell uses the Area Under the Curve (AUC) to calculate whether a critical subset of the input gene set is enriched within the expressed genes for each cell. The distribution of AUC scores across all the cells allows exploring the relative expression of the signature. Since the scoring method is ranking-based, AUCell is independent of the gene expression units and the normalization procedure. In addition, since the cells are evaluated individually, it can easily be applied to bigger datasets, subsetting the expression matrix if needed.
This package uses a Bayesian hierarchical model to detect enriched regions from ChIP-chip experiments. The common goal in analyzing this ChIP-chip data is to detect DNA-protein interactions from ChIP-chip experiments. The BAC package has mainly been tested with Affymetrix tiling array data. However, we expect it to work with other platforms (e.g. Agilent, Nimblegen, cDNA, etc.). Note that BAC does not deal with normalization, so you will have to normalize your data beforehand.
This package provides tools for statistical analysis of assembled transcriptomes, including flexible differential expression analysis, visualization of transcript structures, and matching of assembled transcripts to annotation.
This package provides functions to ease the transition between Rmarkdown and LaTeX documents when authoring a Bioconductor Workflow.
This package provides more than 2000 annotated position frequency matrices from nine public sources, for multiple organisms.
This package implements widgets to provide user interfaces.
Milo performs single-cell differential abundance testing. Cell states are modelled as representative neighbourhoods on a nearest neighbour graph. Hypothesis testing is performed using a negative bionomial generalized linear model.
The topGO package provides tools for testing gene ontology (GO) terms while accounting for the topology of the GO graph. Different test statistics and different methods for eliminating local similarities and dependencies between GO terms can be implemented and applied.
r-kegggraph is an interface between Kegg Pathway database and graph object as well as a collection of tools to analyze, dissect and visualize these graphs. It parses the regularly updated kgml (Kegg XML) files into graph models maintaining all essential pathway attributes. The package offers functionalities including parsing, graph operation, visualization and etc.
EpiDISH is a R package to infer the proportions of a priori known cell-types present in a sample representing a mixture of such cell-types. Right now, the package can be used on DNAm data of whole blood, generic epithelial tissue and breast tissue. Besides, the package provides a function that allows the identification of differentially methylated cell-types and their directionality of change in Epigenome-Wide Association Studies.