Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package implements a multiple testing approach to the choice of a threshold gamma on the p-values using the Average Power Function (APF) and Bayes False Discovery Rate (FDR) robust estimation. Function apf_fdr() estimates both quantities from either raw data or p-values. Function apf_plot() produces smooth graphs and tables of the relevant results. Details of the methods can be found in Quatto P, Margaritella N, et al. (2019) <doi:10.1177/0962280219844288>.
Sets the alpha level for coefficients in a regression model as a decreasing function of the sample size through the use of Jeffreys Approximate Bayes factor. You tell alphaN() your sample size, and it tells you to which value you must lower alpha to avoid Lindley's Paradox. For details, see Wulff and Taylor (2024) <doi:10.1177/14761270231214429>.
This package provides functions are included for recalling AQL (Acceptable Quality Level or Acceptance Quality Level) Based single, double, and multiple attribute sampling plans from the Military Standard (MIL-STD-105E) - American National Standards Institute/American Society for Quality (ANSI/ASQ Z1.4) tables and for retrieving variable sampling plans from Military Standard (MIL-STD-414) - American National Standards Institute/American Society for Quality (ANSI/ASQ Z1.9) tables. The sources for these tables are listed in the URL: field. Also included are functions for computing the OC (Operating Characteristic) and ASN (Average Sample Number) coordinates for the attribute plans it recalls, and functions for computing the estimated proportion nonconforming and the maximum allowable proportion nonconforming for variable sampling plans. The MIL-STD AQL Sampling schemes were the most used and copied set of standards in the world. They are intended to be used for sampling a stream of lots, and were used in contract agreements between supplier and customer companies. When the US military dropped support of MIL-STD 105E and 414, The American National Standards Institute (ANSI) and the International Standards Organization (ISO) adopted the standard with few changes or no changes to the central tables. This package is useful because its computer implementation of these tables duplicates that available in other commercial software and subscription online calculators.
This package provides a number of functions to create and analyze factorial plans according to the Design of Experiments (DoE) approach, with the addition of some utility function to perform some statistical analyses. DoE approach follows the approach in "Design and Analysis of Experiments" by Douglas C. Montgomery (2019, ISBN:978-1-119-49244-3). The package also provides utilities used in the course "Analysis of Data and Statistics" at the University of Trento, Italy.
Processes noble gas mass spectrometer data to determine the isotopic composition of argon (comprised of Ar36, Ar37, Ar38, Ar39 and Ar40) released from neutron-irradiated potassium-bearing minerals. Then uses these compositions to calculate precise and accurate geochronological ages for multiple samples as well as the covariances between them. Error propagation is done in matrix form, which jointly treats all samples and all isotopes simultaneously at every step of the data reduction process. Includes methods for regression of the time-resolved mass spectrometer signals to t=0 ('time zero') for both single- and multi-collector instruments, blank correction, mass fractionation correction, detector intercalibration, decay corrections, interference corrections, interpolation of the irradiation parameter between neutron fluence monitors, and (weighted mean) age calculation. All operations are performed on the logs of the ratios between the different argon isotopes so as to properly treat them as compositional data', sensu Aitchison [1986, The Statistics of Compositional Data, Chapman and Hall].
This package provides tools to read/write/publish metadata based on the Atom XML syndication format. This includes support of Dublin Core XML implementation, and a client to API(s) implementing the AtomPub - SWORD API specification.
Functionality to allow users to easily colour plots with the colour palettes of various academic institutions.
This package provides functions are provided for defining animated, interactive data visualizations in R code, and rendering on a web page. The 2018 Journal of Computational and Graphical Statistics paper, <doi:10.1080/10618600.2018.1513367> describes the concepts implemented.
Simulate an angler population, sample the simulated population with a user-specified survey times, and calculate metrics from a bus route-type creel survey.
Perform the Adaptable Regularized Hotelling's T^2 test (ARHT) proposed by Li et al., (2016) <arXiv:1609.08725>. Both one-sample and two-sample mean test are available with various probabilistic alternative prior models. It contains a function to consistently estimate higher order moments of the population covariance spectral distribution using the spectral of the sample covariance matrix (Bai et al. (2010) <doi:10.1111/j.1467-842X.2010.00590.x>). In addition, it contains a function to sample from 3-variate chi-squared random vectors approximately with a given correlation matrix when the degrees of freedom are large.
This package implements a Bayesian adaptive graphical lasso data-augmented block Gibbs sampler. The sampler simulates the posterior distribution of precision matrices of a Gaussian Graphical Model. This sampler was adapted from the original MATLAB routine proposed in Wang (2012) <doi:10.1214/12-BA729>.
An R wrapper for agena.ai <https://www.agena.ai> which provides users capabilities to work with agena.ai using the R environment. Users can create Bayesian network models from scratch or import existing models in R and export to agena.ai cloud or local API for calculations. Note: running calculations requires a valid agena.ai API license (past the initial trial period of the local API).
This wrapper package for mgcv makes it easier to create high-performing Generalized Additive Models (GAMs). With its central function autogam(), by entering just a dataset and the name of the outcome column as inputs, AutoGAM tries to automate the procedure of configuring a highly accurate GAM which performs at reasonably high speed, even for large datasets.
This package provides a software that implements a method for partitioning genetic trends to quantify the sources of genetic gain in breeding programmes. The partitioning method is described in Garcia-Cortes et al. (2008) <doi:10.1017/S175173110800205X>. The package includes the main function AlphaPart for partitioning breeding values and auxiliary functions for manipulating data and summarizing, visualizing, and saving results.
This package provides a tidy framework for automatic knowledge classification and visualization. Currently, the core functionality of the framework is mainly supported by modularity-based clustering (community detection) in keyword co-occurrence network, and focuses on co-word analysis of bibliometric research. However, the designed functions in akc are general, and could be extended to solve other tasks in text mining as well.
Plot stacked areas and confidence bands as filled polygons, or add polygons to existing plots. A variety of input formats are supported, including vectors, matrices, data frames, formulas, etc.
ACE (Advanced Cohort Engine) is a powerful tool that allows constructing cohorts of patients extremely quickly and efficiently. This package is designed to interface directly with an instance of ACE search engine and facilitates API queries and data dumps. Prerequisite is a good knowledge of the temporal language to be able to efficiently construct a query. More information available at <https://shahlab.stanford.edu/start>.
Create a pie like plot to visualise if the aim or several aims of a project is achieved or close to be achieved i.e the aim is achieved when the point is at the center of the pie plot. Imagine it's like a dartboard and the center means 100% completeness/achievement. Achievement can also be understood as 100% coverage. The standard distribution of completeness allocated in the pie plot is 50%, 80% and 100% completeness.
Predicts antimicrobial peptides using random forests trained on the n-gram encoded peptides. The implemented algorithm can be accessed from both the command line and shiny-based GUI. The AmpGram model is too large for CRAN and it has to be downloaded separately from the repository: <https://github.com/michbur/AmpGramModel>.
Storing very large data objects on a local drive, while still making it possible to manipulate the data in an efficient manner.
Modern software often poorly support older file formats. This package intends to handle many file formats that were native to the antiquated Commodore Amiga machine. This package focuses on file types from the older Amiga operating systems (<= 3.0). It will read and write specific file formats and coerces them into more contemporary data.
Implementation of a hybrid MCDM method build from the AHP (Analytic Hierarchy Process) and TOPSIS-2N (Technique for Order of Preference by Similarity to Ideal Solution - with two normalizations). This method is described in Souza et al. (2018) <doi: 10.1142/S0219622018500207>.
This package provides a suite of functions for analyzing sequences of events. Users can generate and code sequences based on predefined rules, with a special focus on the identification of sequences coded as ABA (when one element appears, followed by a different one, and then followed by the first). Additionally, the package offers the ability to calculate the length of consecutive ABA'-coded sequences sharing common elements. The methods implemented in this package are based on the work by Ziembowicz, K., Rychwalska, A., & Nowak, A. (2022). <doi:10.1177/10464964221118674>.
Helper functions for working with Regional Ocean Modeling System ROMS output. See <https://www.myroms.org/> for more information about ROMS'.