Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Based on Dutta et al. (2018) <doi:10.1016/j.jempfin.2018.02.004>, this package provides their standardized test for abnormal returns in long-horizon event studies. The methods used improve the major weaknesses of size, power, and robustness of long-run statistical tests described in Kothari/Warner (2007) <doi:10.1016/B978-0-444-53265-7.50015-9>. Abnormal returns are weighted by their statistical precision (i.e., standard deviation), resulting in abnormal standardized returns. This procedure efficiently captures the heteroskedasticity problem. Clustering techniques following Cameron et al. (2011) <doi:10.1198/jbes.2010.07136> are adopted for computing cross-sectional correlation robust standard errors. The statistical tests in this package therefore accounts for potential biases arising from returns cross-sectional correlation, autocorrelation, and volatility clustering without power loss.
Stacking rings are tools used to stack pottery in a Kiln. A relatively large group of stacking rings was found in the area of the sanctuary of Dionysos in Miletus in the 1970s. Measurements and additional info is gathered in this package and made available for use by other researchers. The data along with its archaeological context and analysis has been published in "Archäologischer Anzeiger" (2020/1, <doi:10.34780/aa.v0i1.1014>).
Broken adaptive ridge estimator for censored data is used to select variables and estimate their coefficients in the semi-parametric accelerated failure time model for right-censored survival data.
Fits a Causal Effect Random Forest of Interaction Tress (CERFIT) which is a modification of the Random Forest algorithm where each split is chosen to maximize subgroup treatment heterogeneity. Doing this allows it to estimate the individualized treatment effect for each observation in either randomized controlled trial (RCT) or observational data. For more information see L. Li, R. A. Levine, and J. Fan (2022) <doi:10.1002/sta4.457>.
Data from statistical agencies and other institutions often need to be protected before they can be published. This package can be used to perturb statistical tables in a consistent way. The main idea is to add - at the micro data level - a record key for each unit. Based on these keys, for any cell in a statistical table a cell key is computed as a function on the record keys contributing to a specific cell. Values that are added to the cell in order to perturb it are derived from a lookup-table that maps values of cell keys to specific perturbation values. The theoretical basis for the methods implemented can be found in Thompson, Broadfoot and Elazar (2013) <https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2013/Topic_1_ABS.pdf> which was extended and enhanced by Giessing and Tent (2019) <https://unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.46/2019/mtg1/SDC2019_S2_Germany_Giessing_Tent_AD.pdf>.
This package provides a comprehensive collection of datasets exclusively focused on crimes, criminal activities, and related topics. This package serves as a valuable resource for researchers, analysts, and students interested in crime analysis, criminology, social and economic studies related to criminal behavior. Datasets span global and local contexts, with a mix of tabular and spatial data.
This package provides functions for the clustering of variables around Latent Variables, for 2-way or 3-way data. Each cluster of variables, which may be defined as a local or directional cluster, is associated with a latent variable. External variables measured on the same observations or/and additional information on the variables can be taken into account. A "noise" cluster or sparse latent variables can also be defined.
This package provides functions to perform the following analyses: i) inferring epistasis from RNAi double knockdown data; ii) identifying gene pairs of multiple mutation patterns; iii) assessing association between gene pairs and survival; and iv) calculating the smallworldness of a graph (e.g., a gene interaction network). Data and analyses are described in Wang, X., Fu, A. Q., McNerney, M. and White, K. P. (2014). Widespread genetic epistasis among breast cancer genes. Nature Communications. 5 4828. <doi:10.1038/ncomms5828>.
Can take in images in either .jpg, .jpeg, or .png format and creates a colour palette of the most frequent colours used in the image. Also provides some custom colour palettes.
Reading and writing of files in the most commonly used formats of structural crystallography. It includes functions to work with a variety of statistics used in this field and functions to perform basic crystallographic computing. References: D. G. Waterman, J. Foadi, G. Evans (2011) <doi:10.1107/S0108767311084303>.
Model building, surrogate model based optimization and Efficient Global Optimization in combinatorial or mixed search spaces.
Account for uncertainty when working with ranks. Estimate standard errors consistently in linear regression with ranked variables. Construct confidence sets of various kinds for positions of populations in a ranking based on values of a certain feature and their estimation errors. Theory based on Mogstad, Romano, Shaikh, and Wilhelm (2023)<doi:10.1093/restud/rdad006> and Chetverikov and Wilhelm (2023) <doi:10.48550/arXiv.2310.15512>.
This package provides a systematic biology tool was developed to identify cell infiltration via Individualized Cell-Cell interaction network. CITMIC first constructed a weighted cell interaction network through integrating Cell-target interaction information, molecular function data from Gene Ontology (GO) database and gene transcriptomic data in specific sample, and then, it used a network propagation algorithm on the network to identify cell infiltration for the sample. Ultimately, cell infiltration in the patient dataset was obtained by normalizing the centrality scores of the cells.
Climate crop zoning based in minimum and maximum air temperature. The data used in the package are from TerraClimate dataset (<https://www.climatologylab.org/terraclimate.html>), but, it have been calibrated with automatic weather stations of National Meteorological Institute of Brazil. The climate crop zoning of this package can be run for all the Brazilian territory.
Provide the safe color set for color blindness, the simulator of protanopia, deuteranopia. The color sets are collected from: Wong, B. (2011) <doi:10.1038/nmeth.1618>, and <http://mkweb.bcgsc.ca/biovis2012/>. The simulations of the appearance of the colors to color-deficient viewers were based on algorithms in Vienot, F., Brettel, H. and Mollon, J.D. (1999) <doi:10.1002/(SICI)1520-6378(199908)24:4%3C243::AID-COL5%3E3.0.CO;2-3>. The cvdPlot() function to generate ggplot grobs of simulations were modified from <https://github.com/clauswilke/colorblindr>.
This package implements the model-free multiscale idealisation approaches: Jump-Segmentation by MUltiResolution Filter (JSMURF), Hotz et al. (2013) <doi:10.1109/TNB.2013.2284063>, JUmp Local dEconvolution Segmentation filter (JULES), Pein et al. (2018) <doi:10.1109/TNB.2018.2845126>, and Heterogeneous Idealization by Local testing and DEconvolution (HILDE), Pein et al. (2021) <doi:10.1109/TNB.2020.3031202>. Further details on how to use them are given in the accompanying vignette.
Clustering methods, which (if asked) can provide step-by-step explanations of the algorithms used, as described in Ezugwu et. al., (2022) <doi:10.1016/j.engappai.2022.104743>; and datasets to test them on, which highlight the strengths and weaknesses of each technique, as presented in the clustering section of scikit-learn (Pedregosa et al., 2011) <https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html>.
Estimates sugar beet canopy closure with remotely sensed leaf area index and estimates when action might be needed to protect the crop from a Leaf Spot epidemic with a negative prognosis model based on published models.
Uses data from the EPSG Registry to look up suitable coordinate reference system transformations for spatial datasets in R. Returns a data frame with CRS codes that can be used for CRS transformation and mapping projects. Please see the EPSG Dataset Terms of Use at <https://epsg.org/terms-of-use.html> for more information.
Given a patient-sharing network, calculate either the classic care density as proposed by Pollack et al. (2013) <doi:10.1007/s11606-012-2104-7> or the fragmented care density as proposed by Engels et al. (2024) <doi:10.1186/s12874-023-02106-0>. By utilizing the igraph and data.table packages, the provided functions scale well for very large graphs.
Automates the process of containerizing R projects. The core function of containr is generate_dockerfile()', which analyzes an R project's environment and dependencies via an renv lock file and generates a ready-to-use Dockerfile that encapsulates the computational setup. The package helps researchers build portable and consistent workflows so that analyses can be reliably shared, archived, and rerun across systems. See R Core Team (2025) <https://www.R-project.org/>, Ushey et al. (2025) <https://CRAN.R-project.org/package=renv>, and Docker Inc. (2025) <https://www.docker.com/>.
Calculate date of birth, age, and gender, and generate anonymous sequence numbers from CPR numbers. <https://en.wikipedia.org/wiki/Personal_identification_number_(Denmark)>.
Collects several different methods for analyzing and working with connectivity data in R. Though primarily oriented towards marine larval dispersal, many of the methods are general and useful for terrestrial systems as well.
Unified interface for the estimation of causal networks, including the methods backShift (from package backShift'), bivariateANM (bivariate additive noise model), bivariateCAM (bivariate causal additive model), CAM (causal additive model) (from package CAM'; the package is temporarily unavailable on the CRAN repository; formerly available versions can be obtained from the archive), hiddenICP (invariant causal prediction with hidden variables), ICP (invariant causal prediction) (from package InvariantCausalPrediction'), GES (greedy equivalence search), GIES (greedy interventional equivalence search), LINGAM', PC (PC Algorithm), FCI (fast causal inference), RFCI (really fast causal inference) (all from package pcalg') and regression.