Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a ggplot2 extension that provides tools for automatically creating scales to focus on subgroups of the data plotted without losing other information.
Build a map of path-based geometry, this is a simple description of the number of parts in an object and their basic structure. Translation and restructuring operations for planar shapes and other hierarchical types require a data model with a record of the underlying relationships between elements. The gibble() function creates a geometry map, a simple record of the underlying structure in path-based hierarchical types. There are methods for the planar shape types in the sf and sp packages and for types in the trip and silicate packages.
Run a Gibbs sampler for a multivariate Bayesian sparse group selection model with Dirac, continuous and hierarchical spike prior for detecting pleiotropy on the traits. This package is designed for summary statistics containing estimated regression coefficients and its estimated covariance matrix. The methodology is available from: Baghfalaki, T., Sugier, P. E., Truong, T., Pettitt, A. N., Mengersen, K., & Liquet, B. (2021) <doi:10.1002/sim.8855>.
The multiple contrast tests for univariate were proposed by Munko, Ditzhaus, Pauly, Smaga, and Zhang (2023) <doi:10.48550/arXiv.2306.15259>. Recently, they were extended to the multivariate functional data in Munko, Ditzhaus, Pauly, and Smaga (2024) <doi:10.48550/arXiv.2406.01242>. These procedures enable us to evaluate the overall hypothesis regarding equality, as well as specific hypotheses defined by contrasts. In particular, we can perform post hoc tests to examine particular comparisons of interest. Different experimental designs are supported, e.g., one-way and multi-way analysis of variance for functional data.
GEE estimation of the parameters in mean structures with possible correlation between the outcomes. User-specified mean link and variance functions are allowed, along with observation weighting. The M in the name geeM is meant to emphasize the use of the Matrix package, which allows for an implementation based fully in R.
This function is an extension of the Small Area Estimation (SAE) model. Geoadditive Small Area Model is a combination of the geoadditive model with the Small Area Estimation (SAE) model, by adding geospatial information to the SAE model. This package refers to J.N.K Rao and Isabel Molina (2015, ISBN: 978-1-118-73578-7), Bocci, C., & Petrucci, A. (2016)<doi:10.1002/9781118814963.ch13>, and Ardiansyah, M., Djuraidah, A., & Kurnia, A. (2018)<doi:10.21082/jpptp.v2n2.2018.p101-110>.
This package provides a user-friendly, highly customizable R package for building horizon plots in the ggplot2 environment.
The American Community Survey (ACS) <https://www.census.gov/programs-surveys/acs> offers geodatabases with geographic information and associated data of interest to researchers in the area. The goal of this package is to generate objects that allow us to access and consult the information available in various formats, such as in GeoPackage format or in multidimensional ROLAP (Relational On-Line Analytical Processing) star format.
This package implements a generalized coordinate descent (GCD) algorithm for computing the solution paths of the hybrid Huberized support vector machine (HHSVM) and its generalizations. Supported models include the (adaptive) LASSO and elastic net penalized least squares, logistic regression, HHSVM, squared hinge loss SVM and expectile regression.
Selected utilities, in particular geoms and stats functions, extending the ggplot2 package. This package imports functions from EnvStats <doi:10.1007/978-1-4614-8456-1> by Millard (2013), ggpp <https://CRAN.R-project.org/package=ggpp> by Aphalo et al. (2023) and ggstats <doi:10.5281/zenodo.10183964> by Larmarange (2023), and then exports them. This package also contains modified code from ggquickeda <https://CRAN.R-project.org/package=ggquickeda> by Mouksassi et al. (2023) for Kaplan-Meier lines and ticks additions to plots. All functions are tested to make sure that they work reliably.
Data-driven approach for arriving at person-specific time series models. The method first identifies which relations replicate across the majority of individuals to detect signal from noise. These group-level relations are then used as a foundation for starting the search for person-specific (or individual-level) relations. See Gates & Molenaar (2012) <doi:10.1016/j.neuroimage.2012.06.026>.
This package implements readers and writers for file formats associated with genetics data. Reading and writing Plink BED/BIM/FAM and GCTA binary GRM formats is fully supported, including a lightning-fast BED reader and writer implementations. Other functions are readr wrappers that are more constrained, user-friendly, and efficient for these particular applications; handles Plink and Eigenstrat tables (FAM, BIM, IND, and SNP files). There are also make functions for FAM and BIM tables with default values to go with simulated genotype data.
Helper to add insets based on geom_sf() from ggplot2'. This package gives you a drop-in replacement for geom_sf() that supports adding a zoomed inset map without having to create and embed a separate plot.
This package provides ggplot2 extensions for political map making. Implements new geometries for groups of simple feature geometries. Adds palettes and scales for red to blue color mapping and for discrete maps. Implements tools for easy label generation and placement, automatic map coloring, and themes.
Testing, Implementation and Forecasting of Grey Model (GM(1, 1)). For method details see Hsu, L. and Wang, C. (2007). <doi:10.1016/j.techfore.2006.02.005>.
This package contains an engine for spatially-explicit eco-evolutionary mechanistic models with a modular implementation and several support functions. It allows exploring the consequences of ecological and macroevolutionary processes across realistic or theoretical spatio-temporal landscapes on biodiversity patterns as a general term. Reference: Oskar Hagen, Benjamin Flueck, Fabian Fopp, Juliano S. Cabral, Florian Hartig, Mikael Pontarp, Thiago F. Rangel, Loic Pellissier (2021) "gen3sis: A general engine for eco-evolutionary simulations of the processes that shape Earth's biodiversity" <doi:10.1371/journal.pbio.3001340>.
Easily create overlapping grammar of graphics plots for scientific data visualization. This style of plotting is particularly common in climatology and oceanography research communities.
The geographic dimension plays a fundamental role in multidimensional systems. To define a geographic dimension in a star schema, we need a table with attributes corresponding to the levels of the dimension. Additionally, we will also need one or more geographic layers to represent the data using this dimension. The goal of this package is to support the definition of geographic dimensions from layers of geographic information related to each other. It makes it easy to define relationships between layers and obtain the necessary data from them.
Create interactive visualization charts to draw data in three dimensional graphs. The graphs can be included in Shiny apps and R markdown documents, or viewed from the R console and RStudio Viewer. Based on the vis.js Graph3d module and the htmlwidgets R package.
Utility functions to read, manipulate, analyse and write transit feeds in the General Transit Feed Specification (GTFS) data format.
R version of G-Series', Statistics Canada's generalized system devoted to the benchmarking and reconciliation of time series data. The methods used in G-Series essentially come from Dagum, E. B., and P. Cholette (2006) <doi:10.1007/0-387-35439-5>.
Gaussian processes ('GPs') have been widely used to model spatial data, spatio'-temporal data, and computer experiments in diverse areas of statistics including spatial statistics, spatio'-temporal statistics, uncertainty quantification, and machine learning. This package creates basic tools for fitting and prediction based on GPs with spatial data, spatio'-temporal data, and computer experiments. Key characteristics for this GP tool include: (1) the comprehensive implementation of various covariance functions including the Matérn family and the Confluent Hypergeometric family with isotropic form, tensor form, and automatic relevance determination form, where the isotropic form is widely used in spatial statistics, the tensor form is widely used in design and analysis of computer experiments and uncertainty quantification, and the automatic relevance determination form is widely used in machine learning; (2) implementations via Markov chain Monte Carlo ('MCMC') algorithms and optimization algorithms for GP models with all the implemented covariance functions. The methods for fitting and prediction are mainly implemented in a Bayesian framework; (3) model evaluation via Fisher information and predictive metrics such as predictive scores; (4) built-in functionality for simulating GPs with all the implemented covariance functions; (5) unified implementation to allow easy specification of various GPs'.
Generalized Entropy Calibration produces calibration weights using generalized entropy as the objective function for optimization. This approach, as implemented in the GECal package, is based on Kwon, Kim, and Qiu (2024) <doi:10.48550/arXiv.2404.01076>. GECal incorporates design weights into the constraints to maintain design consistency, rather than including them in the objective function itself.
R provides fantastic tools for changepoint analysis, but plots generated by the tools do not have the ggplot2 style. This tool, however, combines changepoint', changepoint.np and ecp together, and uses ggplot2 to visualize changepoints.