Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a lightweight yet powerful framework for building robust data analysis pipelines. With pipeflow', you initialize a pipeline with your dataset and construct workflows step by step by adding R functions. You can modify, remove, or insert steps and parameters at any stage, while pipeflow ensures the pipeline's integrity. Overall, this package offers a beginner-friendly framework that simplifies and streamlines the development of data analysis pipelines by making them modular, intuitive, and adaptable.
Integrated species distribution modeling is a rising field in quantitative ecology thanks to significant rises in the quantity of data available, increases in computational speed and the proven benefits of using such models. Despite this, the general software to help ecologists construct such models in an easy-to-use framework is lacking. We therefore introduce the R package PointedSDMs': which provides the tools to help ecologists set up integrated models and perform inference on them. There are also functions within the package to help run spatial cross-validation for model selection, as well as generic plotting and predicting functions. An introduction to these methods is discussed in Issac, Jarzyna, Keil, Dambly, Boersch-Supan, Browning, Freeman, Golding, Guillera-Arroita, Henrys, Jarvis, Lahoz-Monfort, Pagel, Pescott, Schmucki, Simmonds and Oâ Hara (2020) <doi:10.1016/j.tree.2019.08.006>.
Sample size calculations in causal inference with observational data are increasingly desired. This package is a tool to calculate sample size under prespecified power with minimal summary quantities needed.
Set of functions that implement the PoDBAY method, described in the publication A method to estimate probability of disease and vaccine efficacy from clinical trial immunogenicity data by Julie Dudasova, Regina Laube, Chandni Valiathan, Matthew C. Wiener, Ferdous Gheyas, Pavel Fiser, Justina Ivanauskaite, Frank Liu and Jeffrey R. Sachs (NPJ Vaccines, 2021), <doi:10.1038/s41541-021-00377-6>.
This package provides a suite of functions that fit models that use PPM type priors for partitions. Models include hierarchical Gaussian and probit ordinal models with a (covariate dependent) PPM. If a covariate dependent product partition model is selected, then all the options detailed in Page, G.L.; Quintana, F.A. (2018) <doi:10.1007/s11222-017-9777-z> are available. If covariate values are missing, then the approach detailed in Page, G.L.; Quintana, F.A.; Mueller, P (2020) <doi:10.1080/10618600.2021.1999824> is employed. Also included in the package is a function that fits a Gaussian likelihood spatial product partition model that is detailed in Page, G.L.; Quintana, F.A. (2016) <doi:10.1214/15-BA971>, and multivariate PPM change point models that are detailed in Quinlan, J.J.; Page, G.L.; Castro, L.M. (2023) <doi:10.1214/22-BA1344>. In addition, a function that fits a univariate or bivariate functional data model that employs a PPM or a PPMx to cluster curves based on B-spline coefficients is provided.
This package provides a tool which aims to help evaluate the effect of external borrowing using an integrated approach described in Lewis et al., (2019) <doi:10.1080/19466315.2018.1497533> that combines propensity score and Bayesian dynamic borrowing methods.
Weighted Deming regression, also known as errors-in-variable regression, is applied with suitable weights. Weights are modeled via a precision profile; thus the methods implemented here are referred to as precision profile weighted Deming (PWD) regression. The package covers two settings â one where the precision profiles are known either from external studies or from adequate replication of the X and Y readings, and one in which there is a plausible functional form for the precision profiles but the exact (unknown) function must be estimated from the (generally singlicate) readings. The function set includes tools for: estimated standard errors (via jackknifing); standardized-residual analysis function with regression diagnostic tools for normality, linearity and constant variance; and an outlier analysis identifying significant outliers for closer investigation. The following reference provides further information on mathematical derivations and applications. Hawkins, D.M., and J.J. Kraker. Precision Profile Weighted Deming Regression for Methods Comparison', (in press) <doi:10.1093/jalm/jfaf183>.
Utilizing scalable linear algebra packages mainly including BLACS', PBLAS', and ScaLAPACK in double precision via pbdMPI based on ScaLAPACK version 2.0.2.
This package provides a system to increase the efficiency of dynamic web-scraping with RSelenium by leveraging parallel processing. You provide a function wrapper for your RSelenium scraping routine with a set of inputs, and parsel runs it in several browser instances. Chunked input processing as well as error catching and logging ensures seamless execution and minimal data loss, even when unforeseen RSelenium errors occur. You can additionally build safe scraping functions with minimal coding by utilizing constructor functions that act as wrappers around RSelenium methods.
This package provides a framework for defining pipelines of functions for applying data transformations, model estimation and inverse-transformations, resulting in predicted value generation (or model-scoring) functions that automatically apply the entire pipeline of functions required to go from input to predicted output.
Wrapper of the Petfinder API <https://www.petfinder.com/developers/v2/docs/> that implements methods for interacting with and extracting data from the Petfinder database. The Petfinder REST API allows access to the Petfinder database, one of the largest online databases of adoptable animals and animal welfare organizations across North America.
Estimation of univariate (conditional) densities using penalized B-splines with automatic selection of optimal smoothing parameter.
Compute and tune some positive definite and sparse covariance estimators.
Statistical power analysis for designs including t-tests, correlations, multiple regression, ANOVA, mediation, and logistic regression. Functions accompany Aberson (2019) <doi:10.4324/9781315171500>.
This package provides functions to fit point process models using the Palm likelihood. First proposed by Tanaka, Ogata, and Stoyan (2008) <DOI:10.1002/bimj.200610339>, maximisation of the Palm likelihood can provide computationally efficient parameter estimation for point process models in situations where the full likelihood is intractable. This package is chiefly focused on Neyman-Scott point processes, but can also fit the void processes proposed by Jones-Todd et al. (2019) <DOI:10.1002/sim.8046>. The development of this package was motivated by the analysis of capture-recapture surveys on which individuals cannot be identified---the data from which can conceptually be seen as a clustered point process (Stevenson, Borchers, and Fewster, 2019 <DOI:10.1111/biom.12983>). As such, some of the functions in this package are specifically for the estimation of cetacean density from two-camera aerial surveys.
Generates Plus Code of geometric objects or data frames that contain them, giving the possibility to specify the precision of the area. The main feature of the package comes from the open-source code developed by Google Inc. present in the repository <https://github.com/google/open-location-code/blob/main/java/src/main/java/com/google/openlocationcode/OpenLocationCode.java>. For details about Plus Code', visit <https://maps.google.com/pluscodes/> or <https://github.com/google/open-location-code>.
Test-based Image structural similarity measure and test of independence. This package implements the key functions of two tasks: (1) computing image structural similarity measure PSSIM of Wang, Maldonado and Silwal (2011) <DOI:10.1016/j.csda.2011.04.021>; and (2) test of independence between a response and a covariate in presence of heteroscedastic treatment effects proposed by Wang, Tolos, and Wang (2010) <DOI:10.1002/cjs.10068>.
Construct and analyze projection matrix models from a demography study of marked individuals classified by age or stage. The package covers methods described in Matrix Population Models by Caswell (2001) and Quantitative Conservation Biology by Morris and Doak (2002).
This is a wrapper for the Mercury Parser API. The Mercury Parser is a single API endpoint that takes a URL and gives you back the content reliably and easily. With just one API request, Mercury takes any web article and returns only the relevant content â headline, author, body text, relevant images and more â free from any clutter. Itâ s reliable, easy-to-use and free. See the webpage here: <https://mercury.postlight.com/>.
This package provides functions for constructing dashboards for business process monitoring. Building on the event log objects class from package bupaR'. Allows the use to assemble custom shiny dashboards based on process data.
Conduct post-selection inference for regression coefficients in linear models after they have been selected by adjusted R squared. The p-values and confidence intervals are valid after model selection with the same data. This allows the user to use all data for both model selection and inference without losing control over the type I error rate. The provided tests are more powerful than data splitting, which bases inference on less data since it discards all information used for selection.
This package implements our Bayesian phase I repeated measurement design that accounts for multidimensional toxicity endpoints from multiple treatment cycles. The package also provides a novel design to account for both multidimensional toxicity endpoints and early-stage efficacy endpoints in the phase I design. For both designs, functions are provided to recommend the next dosage selection based on the data collected in the available patient cohorts and to simulate trial characteristics given design parameters. Yin, Jun, et al. (2017) <doi:10.1002/sim.7134>.
Efficient implementations of multiple exact and approximate methods as described in Hong (2013) <doi:10.1016/j.csda.2012.10.006>, Biscarri, Zhao & Brunner (2018) <doi:10.1016/j.csda.2018.01.007> and Zhang, Hong & Balakrishnan (2018) <doi:10.1080/00949655.2018.1440294> for computing the probability mass, cumulative distribution and quantile functions, as well as generating random numbers for both the ordinary and generalized Poisson binomial distribution.
Power and Sample Size for Health Researchers is a Shiny application that brings together a series of functions related to sample size and power calculations for common analysis in the healthcare field. There are functionalities to calculate the power, sample size to estimate or test hypotheses for means and proportions (including test for correlated groups, equivalence, non-inferiority and superiority), association, correlations coefficients, regression coefficients (linear, logistic, gamma, and Cox), linear mixed model, Cronbach's alpha, interobserver agreement, intraclass correlation coefficients, limit of agreement on Bland-Altman plots, area under the curve, sensitivity and specificity incorporating the prevalence of disease. You can also use the online version at <https://hcpa-unidade-bioestatistica.shinyapps.io/PSS_Health/>.