Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The EQ-5D is a widely-used standarized instrument for measuring Health Related Quality Of Life (HRQOL), developed by the EuroQol group <https://euroqol.org/>. It assesses five dimensions; mobility, self-care, usual activities, pain/discomfort, and anxiety/depression, using either a three-level (EQ-5D-3L) or five-level (EQ-5D-5L) scale. Scores from these dimensions are commonly converted into a single utility index using country-specific value sets, which are critical in clinical and economic evaluations of healthcare and in population health surveys. The eq5dsuite package enables users to calculate utility index values for the EQ-5D instruments, including crosswalk utilities using the original crosswalk developed by van Hout et al. (2012) <doi:10.1016/j.jval.2012.02.008> (mapping EQ-5D-5L responses to EQ-5D-3L index values), or the recently developed reverse crosswalk by van Hout et al. (2021) <doi:10.1016/j.jval.2021.03.009> (mapping EQ-5D-3L responses to EQ-5D-5L index values). Users are allowed to add and/or remove user-defined value sets. Additionally, the package provides tools to analyze EQ-5D data according to the recommended guidelines outlined in "Methods for Analyzing and Reporting EQ-5D data" by Devlin et al. (2020) <doi:10.1007/978-3-030-47622-9>.
Presents a "Scenarios" class containing general parameters, risk parameters and projection results. Risk parameters are gathered together into a ParamsScenarios sub-object. The general process for using this package is to set all needed parameters in a Scenarios object, use the customPathsGeneration method to proceed to the projection, then use xxx_PriceDistribution() methods to get asset prices.
Evidence of Absence software (EoA) is a user-friendly application for estimating bird and bat fatalities at wind farms and designing search protocols. The software is particularly useful in addressing whether the number of fatalities has exceeded a given threshold and what search parameters are needed to give assurance that thresholds were not exceeded. The models are applicable even when zero carcasses have been found in searches, following Huso et al. (2015) <doi:10.1890/14-0764.1>, Dalthorp et al. (2017) <doi:10.3133/ds1055>, and Dalthorp and Huso (2015) <doi:10.3133/ofr20151227>.
The amplitude-dependent autoregressive time series model (EXPAR) proposed by Haggan and Ozaki (1981) <doi:10.2307/2335819> was improved by incorporating the moving average (MA) framework for capturing the variability efficiently. Parameters of the EXPARMA model can be estimated using this package. The user is provided with the best fitted EXPARMA model for the data set under consideration.
This package provides a set of extensions for the ergm package to fit multilayer/multiplex/multirelational networks and samples of multiple networks. ergm.multi is a part of the Statnet suite of packages for network analysis. See Krivitsky, Koehly, and Marcum (2020) <doi:10.1007/s11336-020-09720-7> and Krivitsky, Coletti, and Hens (2023) <doi:10.1080/01621459.2023.2242627>.
This package provides a framework to simulate ecosystem dynamics through ordinary differential equations (ODEs). You create an ODE model, tells ecode to explore its behaviour, and perform numerical simulations on the model. ecode also allows you to fit model parameters by machine learning algorithms. Potential users include researchers who are interested in the dynamics of ecological community and biogeochemical cycles.
The experiment selector cross-validated targeted maximum likelihood estimator (ES-CVTMLE) aims to select the experiment that optimizes the bias-variance tradeoff for estimating a causal average treatment effect (ATE) where different experiments may include a randomized controlled trial (RCT) alone or an RCT combined with real-world data. Using cross-validation, the ES-CVTMLE separates the selection of the optimal experiment from the estimation of the ATE for the chosen experiment. The estimated bias term in the selector is a function of the difference in conditional mean outcome under control for the RCT compared to the combined experiment. In order to help include truly unbiased external data in the analysis, the estimated average treatment effect on a negative control outcome may be added to the bias term in the selector. For more details about this method, please see Dang et al. (2022) <arXiv:2210.05802>.
This package provides a convenient toolbox to import data exported from Electronic Data Capture (EDC) software TrialMaster'.
This package implements the Bayesian and likelihood methods proposed in Imai, Lu, and Strauss (2008 <doi:10.1093/pan/mpm017>) and (2011 <doi:10.18637/jss.v042.i05>) for ecological inference in 2 by 2 tables as well as the method of bounds introduced by Duncan and Davis (1953). The package fits both parametric and nonparametric models using either the Expectation-Maximization algorithms (for likelihood models) or the Markov chain Monte Carlo algorithms (for Bayesian models). For all models, the individual-level data can be directly incorporated into the estimation whenever such data are available. Along with in-sample and out-of-sample predictions, the package also provides a functionality which allows one to quantify the effect of data aggregation on parameter estimation and hypothesis testing under the parametric likelihood models.
This package provides tools for modelling electric vehicle charging sessions into generic groups with similar connection patterns called "user profiles", using Gaussian Mixture Models clustering. The clustering and profiling methodology is described in Cañigueral and Meléndez (2021, ISBN:0142-0615) <doi:10.1016/j.ijepes.2021.107195>.
Access to data on European Union laws and court decisions made easy with pre-defined SPARQL queries and GET requests. See Ovadek (2021) <doi:10.1080/2474736X.2020.1870150> .
This package provides empirical likelihood-based methods for the inference of variance components in linear mixed-effects models.
This package implements an explicit exploration strategy for evolutionary algorithms in order to have a more effective search in solving optimization problems. Along with this exploration search strategy, a set of four different Estimation of Distribution Algorithms (EDAs) are also implemented for solving optimization problems in continuous domains. The implemented explicit exploration strategy in this package is described in Salinas-Gutiérrez and Muñoz Zavala (2023) <doi:10.1016/j.asoc.2023.110230>.
Different evidential classifiers, which provide outputs in the form of Dempster-Shafer mass functions. The methods are: the evidential K-nearest neighbor rule, the evidential neural network, radial basis function neural networks, logistic regression, feed-forward neural networks.
Implementation of the Centre of Gravity method and the Extrapolated Centre of Gravity method. It supports replicated observations. Cameron, D.G., et al (1982) <doi:10.1366/0003702824638610> JCGM (2008) <doi:10.59161/JCGM100-2008E>.
Facilitates access to sample datasets from the EunomiaDatasets repository (<https://github.com/ohdsi/EunomiaDatasets>).
Highest averages & largest remainders allocating seats methods and several party system scores. Implemented highest averages allocating seats methods are D'Hondt, Webster, Danish, Imperiali, Hill-Huntington, Dean, Modified Sainte-Lague, equal proportions and Adams. Implemented largest remainders allocating seats methods are Hare, Droop, Hangenbach-Bischoff, Imperial, modified Imperial and quotas & remainders. The main advantage of this package is that ties are always reported and not incorrectly allocated. Party system scores provided are competitiveness, concentration, effective number of parties, party nationalization score, party system nationalization score and volatility. References: Gallagher (1991) <doi:10.1016/0261-3794(91)90004-C>. Norris (2004, ISBN:0-521-82977-1). Laakso & Taagepera (1979) <https://escholarship.org/uc/item/703827nv>. Jones & Mainwaring (2003) <https://kellogg.nd.edu/sites/default/files/old_files/documents/304_0.pdf>. Pedersen (1979) <https://janda.org/c24/Readings/Pedersen/Pedersen.htm>. Golosov (2010) <doi:10.1177/1354068809339538>. Golosov (2014) <doi:10.1177/1354068814549342>.
Correlation chart of two set (x and y) of data. Using Quantiles. Visualize the effect of factor.
Analysis of dichotomous and polytomous response data using the explanatory item response modeling framework, as described in Bulut, Gorgun, & Yildirim-Erbasli (2021) <doi:10.3390/psych3030023>, Stanke & Bulut (2019) <doi:10.21449/ijate.515085>, and De Boeck & Wilson (2004) <doi:10.1007/978-1-4757-3990-9>. Generalized linear mixed modeling is used for estimating the effects of item-related and person-related variables on dichotomous and polytomous item responses.
Simultaneous modeling of the quantile and the expected shortfall of a response variable given a set of covariates, see Dimitriadis and Bayer (2019) <doi:10.1214/19-EJS1560>.
This package provides a collection of functions that allows for easy and consistent use of environment variables. This includes setting, checking, retrieving, transforming, and validating values stored in environment variables.
Misc functions programmed by Eduard Szöcs. Provides read_regnie() to read gridded precipitation data from German Weather Service (DWD, see <http://www.dwd.de/> for more information).
Evolutionary process simulation using geometric morphometric data. Manipulation of landmark data files (TPS), shape plotting and distances plotting functions.
Estimating individual-level covariate-outcome associations using aggregate data ("ecological inference") or a combination of aggregate and individual-level data ("hierarchical related regression").