Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Attempt to repair inconsistencies and missing values in data records by using information from valid values and validation rules restricting the data.
Helps to describe a data frame in hand. Has been developed during PhD work of the maintainer. More information may be obtained from Garai and Paul (2023) <doi:10.1016/j.iswa.2023.200202>.
Designed to support the visualization, numerical computation, qualitative analysis, model-data fusion, and stochastic simulation for autonomous systems of differential equations. Euler and Runge-Kutta methods are implemented, along with tools to visualize the two-dimensional phaseplane. Likelihood surfaces and a simple Markov Chain Monte Carlo parameter estimator can be used for model-data fusion of differential equations and empirical models. The Euler-Maruyama method is provided for simulation of stochastic differential equations. The package was originally written for internal use to support teaching by Zobitz, and refined to support the text "Exploring modeling with data and differential equations using R" by John Zobitz (2021) <https://jmzobitz.github.io/ModelingWithR/index.html>.
Work within the dplyr workflow to add random variates to your data frame. Variates can be added at any level of an existing column. Also, bounds can be specified for simulated variates.
This is the core package that provides both the user API and developer API to deploy the parallel cluster on the cloud using the container service. The user can call clusterPreset() to define the cloud service provider and container and makeDockerCluster() to create the cluster. The developer should see "developer's cookbook" on how to define the cloud provider and container.
Calculate adjusted means and proportions of a variable by groups defined by another variable by direct standardisation, standardised to the structure of the dataset.
Simulation models (apps) of various within-host immune response scenarios. The purpose of the package is to help individuals learn about within-host infection and immune response modeling from a dynamical systems perspective. All apps include explanations of the underlying models and instructions on what to do with the models.
Apply the Deductive Rational Method to a monthly series of flow or precipitation data to fill in missing data. The method is as described in: Campos, D.F., (1984, ISBN:9686194444).
An open, multi-algorithmic pipeline for easy, fast and efficient analysis of cellular sub-populations and the molecular signatures that characterize them. The pipeline consists of four successive steps: data pre-processing, cellular clustering with pseudo-temporal ordering, defining differential expressed genes and biomarker identification. More details on Ghannoum et. al. (2021) <doi:10.3390/ijms22031399>. This package implements extensions of the work published by Ghannoum et. al. (2019) <doi:10.1101/700989>.
This package provides a tool to calculate the correlation boundary for the correlation between the response rate and the log-rank test statistic for the binary surrogate endpoint and the time-to-event primary endpoint, as well as conduct simulation studies to obtain design operating characteristics of the drop-the-losers design.
Estimate common causal parameters using double/debiased machine learning as proposed by Chernozhukov et al. (2018) <doi:10.1111/ectj.12097>. ddml simplifies estimation based on (short-)stacking as discussed in Ahrens et al. (2024) <doi:10.1177/1536867X241233641>, which leverages multiple base learners to increase robustness to the underlying data generating process.
An interface to DifferentialEquations.jl <https://diffeq.sciml.ai/dev/> from the R programming language. It has unique high performance methods for solving ordinary differential equations (ODE), stochastic differential equations (SDE), delay differential equations (DDE), differential-algebraic equations (DAE), and more. Much of the functionality, including features like adaptive time stepping in SDEs, are unique and allow for multiple orders of magnitude speedup over more common methods. Supports GPUs, with support for CUDA (NVIDIA), AMD GPUs, Intel oneAPI GPUs, and Apple's Metal (M-series chip GPUs). diffeqr attaches an R interface onto the package, allowing seamless use of this tooling by R users. For more information, see Rackauckas and Nie (2017) <doi:10.5334/jors.151>.
Identifies code blocks that have a high level of similarity within a set of R files.
Query database tables over a DBI connection using data.table syntax. Attach database schemas to the search path. Automatically merge using foreign key constraints.
Discretization-based random sampling algorithm that is useful for a complex model in high dimension is implemented. The normalizing constant of a target distribution is not needed. Posterior summaries are compared with those by OpenBUGS'. The method is described: Wang and Lee (2014) <doi:10.1016/j.csda.2013.06.011> and exercised in Lee (2009) <http://hdl.handle.net/1993/21352>.
An implementation of distributional random forests as introduced in Cevid & Michel & Meinshausen & Buhlmann (2020) <arXiv:2005.14458>.
Calculate multiple or pairwise dissimilarity for orders q = 0-N (CqN; Chao et al. 2008 <doi:10/fcvn63>) for a set of species assemblages or interaction networks.
Data cloud geometry (DCG) applies random walks in finding community structures for social networks. Fushing, VanderWaal, McCowan, & Koehl (2013) (<doi:10.1371/journal.pone.0056259>).
The data consist of a set of variables measured on several groups of individuals. To each group is associated an estimated probability density function. The package provides tools to create or manage such data and functional methods (principal component analysis, multidimensional scaling, cluster analysis, discriminant analysis...) for such probability densities.
Datasets and functions that can be used for data analysis practice, homework and projects in data science courses and workshops. 26 datasets are available for case studies in data visualization, statistical inference, modeling, linear regression, data wrangling and machine learning.
Infer progression of circadian rhythms in transcriptome data in which samples are not labeled with time of day and coverage of the circadian cycle may be incomplete. See Shilts et al. (2018) <doi:10.7717/peerj.4327>.
With bivariate data, it is possible to calculate 2-dimensional kernel density estimates that return polygons at given levels of probability. densityarea returns these polygons for analysis, including for calculating their area.
Allows the computation of clustering coefficients for directed and weighted networks by using different approaches. It allows to compute clustering coefficients that are not present in igraph package. A description of clustering coefficients can be found in "Directed clustering in weighted networks: a new perspective", Clemente, G.P., Grassi, R. (2017), <doi:10.1016/j.chaos.2017.12.007>.
Draw, manipulate, and evaluate directed acyclic graphs and simulate corresponding data, as described in International Journal of Epidemiology 50(6):1772-1777.