Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Based on random forest principle, DynForest is able to include multiple longitudinal predictors to provide individual predictions. Longitudinal predictors are modeled through the random forest. The methodology is fully described for a survival outcome in: Devaux, Helmer, Genuer & Proust-Lima (2023) <doi: 10.1177/09622802231206477>.
Analysis of agreement for nominal data between two raters using the Delta model. This model is proposed as an alternative to the widespread measure Cohen kappa coefficient, which performs poorly when the marginal distributions are very asymmetric (Martin-Andres and Femia-Marzo (2004), <doi:10.1348/000711004849268>; Martin-Andres and Femia-Marzo (2008) <doi:10.1080/03610920701669884>). The package also contains a function to perform a massive analysis of multiple raters against a gold standard. A shiny app is also provided to obtain the measures of nominal agreement between two raters.
Designed for network analysis, leveraging the personalized PageRank algorithm to calculate node scores in a given graph. This innovative approach allows users to uncover the importance of nodes based on a customized perspective, making it particularly useful in fields like bioinformatics, social network analysis, and more.
This package provides a collection of utility functions.
This package provides a flexible container to transport and manipulate complex sets of data. These data may consist of multiple data files and associated meta data and ancillary files. Individual data objects have associated system level meta data, and data files are linked together using the OAI-ORE standard resource map which describes the relationships between the files. The OAI- ORE standard is described at <https://www.openarchives.org/ore/>. Data packages can be serialized and transported as structured files that have been created following the BagIt specification. The BagIt specification is described at <https://datatracker.ietf.org/doc/html/draft-kunze-bagit-08>.
Implement DiSTATIS and CovSTATIS (three-way multidimensional scaling). DiSTATIS and CovSTATIS are used to analyze multiple distance/covariance matrices collected on the same set of observations. These methods are based on Abdi, H., Williams, L.J., Valentin, D., & Bennani-Dosse, M. (2012) <doi:10.1002/wics.198>.
This package provides functions and an example dataset for the psychometric theory of knowledge spaces. This package implements data analysis methods and procedures for simulating data and quasi orders and transforming different formulations in knowledge space theory. See package?DAKS for an overview.
Works as an "add-on" to packages like shiny', future', as well as rlang', and provides utility functions. Just like dipping sauce adding flavors to potato chips or pita bread, dipsaus for data analysis and visualizations adds handy functions and enhancements to popular packages. The goal is to provide simple solutions that are frequently asked for online, such as how to synchronize shiny inputs without freezing the app, or how to get memory size on Linux or MacOS system. The enhancements roughly fall into these four categories: 1. shiny input widgets; 2. high-performance computing using the future package; 3. modify R calls and convert among numbers, strings, and other objects. 4. utility functions to get system information such like CPU chip-set, memory limit, etc.
This package provides vectorised functions for computing p-values of various common discrete statistical tests, as described e.g. in Agresti (2002) <doi:10.1002/0471249688>, including their distributions. Exact and approximate computation methods are provided. For exact p-values, several procedures of determining two-sided p-values are included, which are outlined in more detail in Hirji (2006) <doi:10.1201/9781420036190>.
This package contains a robust set of tools designed for constructing deep neural networks, which are highly adaptable with user-defined loss function and probability models. It includes several practical applications, such as the (deepAFT) model, which utilizes a deep neural network approach to enhance the accelerated failure time (AFT) model for survival data. Another example is the (deepGLM) model that applies deep neural network to the generalized linear model (glm), accommodating data types with continuous, categorical and Poisson distributions.
This package provides documentation in form of a common vignette to packages distr', distrEx', distrMod', distrSim', distrTEst', distrTeach', and distrEllipse'.
This package provides tools to create and manipulate probability distributions using S3. Generics pdf(), cdf(), quantile(), and random() provide replacements for base R's d/p/q/r style functions. Functions and arguments have been named carefully to minimize confusion for students in intro stats courses. The documentation for each distribution contains detailed mathematical notes.
Constructs confidence regions without the need to know the sampling distribution of bivariate data. The method was proposed by Zhiqiu Hu & Rong-cai Yang (2013) <doi:10.1371/journal.pone.0081179.g001>.
This package provides select, insert, update, upsert, and delete database operations. Supports PostgreSQL', MySQL', SQLite', and more, and plays nicely with the DBI package.
Researchers carried out a series of experiments passing a number of essays to different GPT detection models. Juxtaposing detector predictions for papers written by native and non-native English writers, the authors argue that GPT detectors disproportionately classify real writing from non-native English writers as AI-generated.
This package provides the dose transition pathways (DTP) to project in advance the doses recommended by a model-based design for subsequent patients (stay, escalate, deescalate or stop early) using all the accumulated toxicity information; See Yap et al (2017) <doi: 10.1158/1078-0432.CCR-17-0582>. DTP can be used as a design and an operational tool and can be displayed as a table or flow diagram. The dtpcrm package also provides the modified continual reassessment method (CRM) and time-to-event CRM (TITE-CRM) with added practical considerations to allow stopping early when there is sufficient evidence that the lowest dose is too toxic and/or there is a sufficient number of patients dosed at the maximum tolerated dose.
To calculate the sensitivity and specificity in the absence of gold standard using the Bayesian method. The Bayesian method can be referenced at Haiyan Gu and Qiguang Chen (1999) <doi:10.3969/j.issn.1002-3674.1999.04.004>.
This package contains one main function deduped() which speeds up slow, vectorized functions by only performing computations on the unique values of the input and expanding the results at the end.
Implementation of the Density Ratio Permutation Test for testing the goodness-of-fit of a hypothesised ratio of two densities, as described in Bordino and Berrett (2025) <doi:10.48550/arXiv.2505.24529>.
Detect abrupt changes in time series with local fluctuations as a random walk process and autocorrelated noise as an AR(1) process. See Romano, G., Rigaill, G., Runge, V., Fearnhead, P. (2021) <doi:10.1080/01621459.2021.1909598>.
Data Analysis using Bootstrap-Coupled ESTimation. Estimation statistics is a simple framework that avoids the pitfalls of significance testing. It uses familiar statistical concepts: means, mean differences, and error bars. More importantly, it focuses on the effect size of one's experiment/intervention, as opposed to a false dichotomy engendered by P values. An estimation plot has two key features: 1. It presents all datapoints as a swarmplot, which orders each point to display the underlying distribution. 2. It presents the effect size as a bootstrap 95% confidence interval on a separate but aligned axes. Estimation plots are introduced in Ho et al., Nature Methods 2019, 1548-7105. <doi:10.1038/s41592-019-0470-3>. The free-to-view PDF is located at <https://www.nature.com/articles/s41592-019-0470-3.epdf?author_access_token=Euy6APITxsYA3huBKOFBvNRgN0jAjWel9jnR3ZoTv0Pr6zJiJ3AA5aH4989gOJS_dajtNr1Wt17D0fh-t4GFcvqwMYN03qb8C33na_UrCUcGrt-Z0J9aPL6TPSbOxIC-pbHWKUDo2XsUOr3hQmlRew%3D%3D>.
Analysis, visualisation and simulation of digital polymerase chain reaction (dPCR) (Burdukiewicz et al. (2016) <doi:10.1016/j.bdq.2016.06.004>). Supports data formats of commercial systems (Bio-Rad QX100 and QX200; Fluidigm BioMark) and other systems.
This package provides functions for interacting with all sections of the official Danish Address Web API (also known as DAWA') <https://api.dataforsyningen.dk>. The development of this package is completely independent from the government agency, Klimadatastyrelsen, who maintains the API.
This package provides a function toolkit to facilitate reproducible RNA-Seq Differential Gene Expression (DGE) analysis (Law (2015) <doi:10.12688/f1000research.9005.3>). The tools include both analysis work-flow and utility functions: mapping/unit conversion, count normalization, accounting for unknown covariates, and more. This is a complement/cohort to the DGEobj package that provides a flexible container to manage and annotate Differential Gene Expression analysis results.