Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
It contains functions for estimating the DNA copy number profile using mBPCR with the aim of detecting regions with copy number changes.
Estimate distribution of methylation patterns from a table of counts from a bisulphite sequencing experiment given a non-conversion rate and read error rate.
Codelink UniSet Mouse I Bioarray (~10 000 mouse gene targets) annotation data (chip m10kcod) assembled using data from public repositories.
MIRit is an R package that provides several methods for investigating the relationships between miRNAs and genes in different biological conditions. In particular, MIRit allows to explore the functions of dysregulated miRNAs, and makes it possible to identify miRNA-gene regulatory axes that control biological pathways, thus enabling the users to unveil the complexity of miRNA biology. MIRit is an all-in-one framework that aims to help researchers in all the central aspects of an integrative miRNA-mRNA analyses, from differential expression analysis to network characterization.
FHCRC Genomics Shared Resource Mu15v1 Annotation Data (Mu15v1) assembled using data from public repositories.
Translating mature miRNA names to different miRBase versions, sequence retrieval, checking names for validity and detecting miRBase version of a given set of names (data from http://www.mirbase.org/).
MBttest method was developed from beta t-test method of Baggerly et al(2003). Compared to baySeq (Hard castle and Kelly 2010), DESeq (Anders and Huber 2010) and exact test (Robinson and Smyth 2007, 2008) and the GLM of McCarthy et al(2012), MBttest is of high work efficiency,that is, it has high power, high conservativeness of FDR estimation and high stability. MBttest is suit- able to transcriptomic data, tag data, SAGE data (count data) from small samples or a few replicate libraries. It can be used to identify genes, mRNA isoforms or tags differentially expressed between two conditions.
The package provides statistical tools for detecting differentially abundant proteins in shotgun mass spectrometry-based proteomic experiments with tandem mass tag (TMT) labeling. It provides multiple functionalities, including aata visualization, protein quantification and normalization, and statistical modeling and inference. Furthermore, it is inter-operable with other data processing tools, such as Proteome Discoverer, MaxQuant, OpenMS and SpectroMine.
martini deals with the low power inherent to GWAS studies by using prior knowledge represented as a network. SNPs are the vertices of the network, and the edges represent biological relationships between them (genomic adjacency, belonging to the same gene, physical interaction between protein products). The network is scanned using SConES, which looks for groups of SNPs maximally associated with the phenotype, that form a close subnetwork.
RNG_MRC Mouse Pangenomic 24k Set annotation data (chip mm24kresogen) assembled using data from public repositories.
Gene expression data for the two breast cancer cohorts published by Glas and Buyse in 2006. This cohorts were used to implement and validate the mammaPrint breast cancer test.
Different data resources for microRNAs and some functions for manipulating them.
MS-based metabolomics data processing and compound annotation pipeline.
Raw amplification data from a large microRNA mixture / dilution study. These data are used by the miRcomp package to assess the performance of methods that estimate expression from the amplification curves.
Two-stage measurement error model for correlation estimation with smaller bias than the usual sample correlation.
MSstatsQC is an R package which provides longitudinal system suitability monitoring and quality control tools for proteomic experiments.
MetaboSignal is an R package that allows merging, analyzing and customizing metabolic and signaling KEGG pathways. It is a network-based approach designed to explore the topological relationship between genes (signaling- or enzymatic-genes) and metabolites, representing a powerful tool to investigate the genetic landscape and regulatory networks of metabolic phenotypes.
marr (Maximum Rank Reproducibility) is a nonparametric approach that detects reproducible signals using a maximal rank statistic for high-dimensional biological data. In this R package, we implement functions that measures the reproducibility of features per sample pair and sample pairs per feature in high-dimensional biological replicate experiments. The user-friendly plot functions in this package also plot histograms of the reproducibility of features per sample pair and sample pairs per feature. Furthermore, our approach also allows the users to select optimal filtering threshold values for the identification of reproducible features and sample pairs based on output visualization checks (histograms). This package also provides the subset of data filtered by reproducible features and/or sample pairs.
This package provides a method to identify differential expression genes in the same or different species. Given that non-DE genes have some similarities in features, a scaling-free minimum enclosing ball (SFMEB) model is built to cover those non-DE genes in feature space, then those DE genes, which are enormously different from non-DE genes, being regarded as outliers and rejected outside the ball. The method on this package is described in the article A minimum enclosing ball method to detect differential expression genes for RNA-seq data'. The SFMEB method is extended to the scMEB method that considering two or more potential types of cells or unknown labels scRNA-seq dataset DEGs identification.
The missRows package implements the MI-MFA method to deal with missing individuals ('biological units') in multi-omics data integration. The MI-MFA method generates multiple imputed datasets from a Multiple Factor Analysis model, then the yield results are combined in a single consensus solution. The package provides functions for estimating coordinates of individuals and variables, imputing missing individuals, and various diagnostic plots to inspect the pattern of missingness and visualize the uncertainty due to missing values.
The goal of MineICA is to perform Independent Component Analysis (ICA) on multiple transcriptome datasets, integrating additional data (e.g molecular, clinical and pathological). This Integrative ICA helps the biological interpretation of the components by studying their association with variables (e.g sample annotations) and gene sets, and enables the comparison of components from different datasets using correlation-based graph.
Analysis of de novo copy number variants in trios from high-dimensional genotyping platforms.
The `miaTime` package provides tools for microbiome time series analysis based on (Tree)SummarizedExperiment infrastructure.
Calculates a single number for a whole sequence that reflects the propensity of a DNA binding protein to interact with it. The DNA binding protein has to be described with a PFM matrix, for example gotten from Jaspar.