Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
PyTorch is a Python package that provides two high-level features:
tensor computation (like NumPy) with strong GPU acceleration;
deep neural networks (DNNs) built on a tape-based autograd system.
You can reuse Python packages such as NumPy, SciPy, and Cython to extend PyTorch when needed.
Note: currently this package does not provide GPU support.
This package provides simple access speech to text for using in Linux without being tied to a desktop environment, using the vosk-api. The user configuration lets you manipulate text using Python string operations. It has zero overhead, as this relies on manual activation and there are no background processes. Dictation is accessed manually with nerd-dictation begin and nerd-dictation end commands.
This package provides a GStreamer plugin that wraps Kaldi's SingleUtteranceNnet2Decoder. It requires iVector-adapted DNN acoustic models. The iVectors are adapted to the current audio stream automatically.
This is a package for hassle-free computation of shareable, comparable, and reproducible BLEU, chrF, and TER scores for natural language processing.
fastText is a library for efficient learning of word representations and sentence classification.
GPyTorch is a Gaussian process library implemented using PyTorch.
BoTorch is a library for Bayesian Optimization built on PyTorch.
This package provides common Python utilities and GitHub Actions for the Lightning suite of libraries.
ONNX Runtime is a performance-focused complete scoring engine for Open Neural Network Exchange (ONNX) models, with an open extensible architecture to continually address the latest developments in AI and Deep Learning. ONNX Runtime stays up to date with the ONNX standard with complete implementation of all ONNX operators, and supports all ONNX releases (1.2+) with both future and backwards compatibility.
This package provides easy download of thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.
These models can be applied on:
Text, for tasks like text classification, information extraction, question answering, summarization, translation, and text generation, in over 100 languages.
Images, for tasks like image classification, object detection, and segmentation.
Audio, for tasks like speech recognition and audio classification.
Transformer models can also perform tasks on several modalities combined, such as table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.
This package provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community. At the same time, each Python module defining an architecture is fully standalone and can be modified to enable quick research experiments.
Transformers is backed by the three most popular deep learning libraries — Jax, PyTorch and TensorFlow — with a seamless integration between them.
LinearOperator is a PyTorch package for abstracting away the linear algebra routines needed for structured matrices (or operators).
Low-precision, high-performance matrix-matrix multiplications and convolution library for server-side inference.
This package provides a standard API for reinforcement learning and a diverse set of reference environments (formerly Gym).
The MCL algorithm is short for the Markov Cluster Algorithm, a fast and scalable unsupervised cluster algorithm for graphs (also known as networks) based on simulation of (stochastic) flow in graphs.
PyTorch is a Python package that provides two high-level features:
tensor computation (like NumPy) with strong GPU acceleration;
deep neural networks (DNNs) built on a tape-based autograd system.
You can reuse Python packages such as NumPy, SciPy, and Cython to extend PyTorch when needed.
Note: currently this package does not provide GPU support.
Scikit-rebate is a scikit-learn-compatible Python implementation of ReBATE, a suite of Relief-based feature selection algorithms for Machine Learning. These algorithms excel at identifying features that are predictive of the outcome in supervised learning problems, and are especially good at identifying feature interactions that are normally overlooked by standard feature selection algorithms.
This package provides provides an implementation of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for Python.
The General Hidden Markov Model library (GHMM) is a C library with additional Python bindings implementing a wide range of types of Hidden Markov Models (HMM) and algorithms: discrete, continuous emissions, basic training, HMM clustering, HMM mixtures.
Dlib is a modern C++ toolkit containing machine learning algorithms and tools. It is used in both industry and academia in a wide range of domains including robotics, embedded devices, mobile phones, and large high performance computing environments.
Scikit-learn provides simple and efficient tools for data mining and data analysis.
This package provides a tensor-like library for functions and distributions.
ML Collections is a library of Python collections designed for Machine Learning usecases.
This package provides Autograd-compatible approximations to the gamma family of functions.
Uniform Manifold Approximation and Projection is a dimension reduction technique that can be used for visualization similarly to t-SNE, but also for general non-linear dimension reduction.