Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Tool is created for regression, prediction and forecast analysis of macroeconomic and credit data. The package includes functions from existing R packages adapted for banking sector of Kazakhstan. The purpose of the package is to optimize statistical functions for easier interpretation for bank analysts and non-statisticians.
This package provides a free software for a fast and easy analysis of 1:1 molecular interaction studies. This package is suitable for a high-throughput data analysis. Both the online app and the package are completely open source. You provide a table of sensogram, tell anabel which method to use, and it takes care of all fitting details. The first two releases of anabel were created and implemented as in (<doi:10.1177/1177932218821383>, <doi:10.1093/database/baz101>).
This package provides methods to evaluate the performance characteristics of various point and interval estimators for optimal adaptive two-stage designs as described in Meis et al. (2024) <doi:10.1002/sim.10020>. Specifically, this package is written to work with trial designs created by the adoptr package (Kunzmann et al. (2021) <doi:10.18637/jss.v098.i09>; Pilz et al. (2021) <doi:10.1002/sim.8953>)). Apart from the a priori evaluation of performance characteristics, this package also allows for the evaluation of the implemented estimators on real datasets, and it implements methods to calculate p-values.
Facilitates writing computationally reproducible student theses in PDF format that conform to the American Psychological Association (APA) manuscript guidelines (6th Edition). The package currently provides two R Markdown templates for homework and theses at the Psychology Department of the University of Cologne. The package builds on the package papaja but is tailored to the requirements of student theses and omits features for simplicity.
The agghoo procedure is an alternative to usual cross-validation. Instead of choosing the best model trained on V subsamples, it determines a winner model for each subsample, and then aggregates the V outputs. For the details, see "Aggregated hold-out" by Guillaume Maillard, Sylvain Arlot, Matthieu Lerasle (2021) <arXiv:1909.04890> published in Journal of Machine Learning Research 22(20):1--55.
Collect your data on digital marketing campaigns from Appsflyer using the Windsor.ai API <https://windsor.ai/api-fields/>.
Designed for the development and application of hidden Markov models and profile HMMs for biological sequence analysis. Contains functions for multiple and pairwise sequence alignment, model construction and parameter optimization, file import/export, implementation of the forward, backward and Viterbi algorithms for conditional sequence probabilities, tree-based sequence weighting, and sequence simulation. Features a wide variety of potential applications including database searching, gene-finding and annotation, phylogenetic analysis and sequence classification. Based on the models and algorithms described in Durbin et al (1998, ISBN: 9780521629713).
This package provides a set of functions to access the ARDECO (Annual Regional Database of the European Commission) data directly from the official ARDECO public repository through the exploitation of the ARDECO APIs. The APIs are completely transparent to the user and the provided functions provide a direct access to the ARDECO data. The ARDECO database is a collection of variables related to demography, employment, labour market, domestic product, capital formation. Each variable can be exposed in one or more units of measure as well as refers to total values plus additional dimensions like economic sectors, gender, age classes. Data can be also aggregated at country level according to the tercet classes as defined by EUROSTAT. The description of the ARDECO database can be found at the following URL <https://territorial.ec.europa.eu/ardeco>.
This package provides tools for downloading hourly averages, daily maximums and minimums from each of the pollution, wind, and temperature measuring stations or geographic zones in the Mexico City metro area. The package also includes the locations of each of the stations and zones. See <http://aire.cdmx.gob.mx/> for more information.
This package provides tools supporting multi-criteria and group decision making, including variable number of criteria, by means of aggregation operators, spread measures, fuzzy logic connectives, fusion functions, and preordered sets. Possible applications include, but are not limited to, quality management, scientometrics, software engineering, etc.
This package provides functions for Arps decline-curve analysis on oil and gas data. Includes exponential, hyperbolic, harmonic, and hyperbolic-to-exponential models as well as the preceding with initial curtailment or a period of linear rate buildup. Functions included for computing rate, cumulative production, instantaneous decline, EUR, time to economic limit, and performing least-squares best fits.
Wraps the Abseil C++ library for use by R packages. Original files are from <https://github.com/abseil/abseil-cpp>. Patches are located at <https://github.com/doccstat/abseil-r/tree/main/local/patches>.
This package performs the analysis of completely randomized experimental designs (CRD), randomized blocks (RBD) and Latin square (LSD), experiments in double and triple factorial scheme (in CRD and RBD), experiments in subdivided plot scheme (in CRD and RBD), subdivided and joint analysis of experiments in CRD and RBD, linear regression analysis, test for two samples. The package performs analysis of variance, ANOVA assumptions and multiple comparison test of means or regression, according to Pimentel-Gomes (2009, ISBN: 978-85-7133-055-9), nonparametric test (Conover, 1999, ISBN: 0471160687), test for two samples, joint analysis of experiments according to Ferreira (2018, ISBN: 978-85-7269-566-4) and generalized linear model (glm) for binomial and Poisson family in CRD and RBD (Carvalho, FJ (2019), <doi:10.14393/ufu.te.2019.1244>). It can also be used to obtain descriptive measures and graphics, in addition to correlations and creative graphics used in agricultural sciences (Agronomy, Zootechnics, Food Science and related areas). Shimizu, G. D., Marubayashi, R. Y. P., Goncalves, L. S. A. (2025) <doi:10.4025/actasciagron.v47i1.73889>.
This package provides a spatiotemporal model that simulates the spread of Ascochyta blight in chickpea fields based on location-specific weather conditions. This model is adapted from a model developed by Diggle et al. (2002) <doi:10.1094/PHYTO.2002.92.10.1110> for simulating the spread of anthracnose in a lupin field.
Enable translation of a tiny subset of R to C++. The user has to define a R function which gets translated. For a full list of possible functions check the documentation. After translation an R function is returned which is a shallow wrapper around the C++ code. Alternatively an external pointer to the C++ function is returned to the user. The intention of the package is to generate fast functions which can be used as ode-system or during optimization.
This package provides a simple driver that reads binary data created by the ASD Inc. portable spectrometer instruments, such as the FieldSpec (for more information, see <http://www.asdi.com/products/fieldspec-spectroradiometers>). Spectral data can be extracted from the ASD files as raw (DN), white reference, radiance, or reflectance. Additionally, the metadata information contained in the ASD file header can also be accessed.
Adaptive smoothing functions for estimating the blood oxygenation level dependent (BOLD) effect by using functional Magnetic Resonance Imaging (fMRI) data, based on adaptive Gauss Markov random fields, for real as well as simulated data. The implemented models make use of efficient Markov Chain Monte Carlo methods. Implemented methods are based on the research developed by A. Brezger, L. Fahrmeir, A. Hennerfeind (2007) <https://www.jstor.org/stable/4626770>.
Consider autoregressive model of order p where the distribution function of innovation is unknown, but innovations are independent and symmetrically distributed. The package contains a function named ARMDE which takes X (vector of n observations) and p (order of the model) as input argument and returns minimum distance estimator of the parameters in the model.
The image of the amino acid transform on the protein level is drawn, and the automatic routing of the functional elements such as the domain and the mutation site is completed.
Amber is a server application for capturing electronic data records. Rich forms are used to collect data. This Amber client allows to perform data extraction for reporting or data transfer at persistent location purposes.
This package provides methods to analyse spatial units in archaeology from the relationships between refitting fragmented objects scattered in these units (e.g. stratigraphic layers). Graphs are used to model archaeological observations. The package is mainly based on the igraph package for graph analysis. Functions can: 1) create, manipulate, visualise, and simulate fragmentation graphs, 2) measure the cohesion and admixture of archaeological spatial units, and 3) characterise the topology of a specific set of refitting relationships. A series of published empirical datasets is included. Documentation about archeofrag is provided by a vignette and by the accompanying scientific papers: Plutniak (2021, Journal of Archaeological Science, <doi:10.1016/j.jas.2021.105501>) and Plutniak (2022, Journal of Open Source Software, <doi:10.21105/joss.04335>). This package is complemented by the archeofrag.gui R package, a companion GUI application available at <https://analytics.huma-num.fr/Sebastien.Plutniak/archeofrag/>.
This package implements the Age Band Decomposition (ABD) method for standardizing tree ring width data while preserving both low and high frequency variability. Unlike traditional detrending approaches that can distort long term growth trends, ABD decomposes ring width series into multiple age classes, detrends each class separately, and then recombines them to create standardized chronologies. This approach improves the detection of growth signals linked to past climatic and environmental factors, making it particularly valuable for dendroecological and dendroclimatological studies. The package provides functions to perform ABD-based standardization, compare results with other common methods (e.g., BAI, C method, RCS), and facilitate the interpretation of growth patterns under current and future climate variability.
Getting and parsing data of location geocode/reverse-geocode and administrative regions from AutoNavi Maps'<https://lbs.amap.com/api/webservice/summary> API.
This package provides a collection of functions for computing centrographic statistics (e.g., standard distance, standard deviation ellipse, standard deviation box) for observations taken at point locations. Separate plotting functions have been developed for each measure. Users interested in writing results to ESRI shapefiles can do so by using results from aspace functions as inputs to the convert.to.shapefile() and write.shapefile() functions in the shapefiles library. We intend to provide terra integration for geographic data in a future release. The aspace package was originally conceived to aid in the analysis of spatial patterns of travel behaviour (see Buliung and Remmel 2008 <doi:10.1007/s10109-008-0063-7>).