Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Uses Bessel functions to calculate the fundamental and complementary analytic solutions to the Kelvin differential equation.
Selection of k in k-means clustering based on Pham et al. paper ``Selection of k in k-means clustering''.
K Quantiles Medoids (KQM) clustering applies quantiles to divide data of each dimension into K mean intervals. Combining quantiles of all the dimensions of the data and fully permuting quantiles on each dimension is the strategy to determine a pool of candidate initial cluster centers. To find the best initial cluster centers from the pool of candidate initial cluster centers, two methods based on quantile strategy and PAM strategy respectively are proposed. During a clustering process, medoids of clusters are used to update cluster centers in each iteration. Comparison between KQM and the method of randomly selecting initial cluster centers shows that KQM is almost always getting clustering results with smaller total sum squares of distances.
This package provides methods to extract information on pathways, genes and various single-nucleotid polymorphisms (SNPs) from online databases. It provides functions for data preparation and evaluation of genetic influence on a binary outcome using the logistic kernel machine test (LKMT). Three different kernel functions are offered to analyze genotype information in this variance component test: A linear kernel, a size-adjusted kernel and a network-based kernel).
Assists researchers in choosing Key Opinion Leaders (KOLs) in a network to help disseminate or encourage adoption of an innovation by other network members. Potential KOL teams are evaluated using the ABCDE framework (Neal et al., 2025 <doi:10.31219/osf.io/3vxy9_v1>). This framework which considers: (1) the team members Availability, (2) the Breadth of the team's network coverage, (3) the Cost of recruiting a team of a given size, and (4) the Diversity of the team's members, (5) which are pooled into a single Evaluation score.
In self-reported or anonymised data the user often encounters heaped data, i.e. data which are rounded (to a possibly different degree of coarseness). While this is mostly a minor problem in parametric density estimation the bias can be very large for non-parametric methods such as kernel density estimation. This package implements a partly Bayesian algorithm treating the true unknown values as additional parameters and estimates the rounding parameters to give a corrected kernel density estimate. It supports various standard bandwidth selection methods. Varying rounding probabilities (depending on the true value) and asymmetric rounding is estimable as well: Gross, M. and Rendtel, U. (2016) (<doi:10.1093/jssam/smw011>). Additionally, bivariate non-parametric density estimation for rounded data, Gross, M. et al. (2016) (<doi:10.1111/rssa.12179>), as well as data aggregated on areas is supported.
Time Series Analysis including break detection, spectral analysis, KZ Fourier Transforms.
This package provides a wrapper for querying WISKI databases via the KiWIS REST API. WISKI is an SQL relational database used for the collection and storage of water data developed by KISTERS and KiWIS is a REST service that provides access to WISKI databases via HTTP requests (<https://www.kisters.eu/water-weather-and-environment/>). Contains a list of default databases (called hubs') and also allows users to provide their own KiWIS URL. Supports the entire query process- from metadata to specific time series values. All data is returned as tidy tibbles.
Create a kite-square plot for contingency tables using ggplot2', to display their relevant quantities in a single figure (marginal, conditional, expected, observed, chi-squared). The plot resembles a flying kite inside a square if the variables are independent, and deviates from this the more dependence exists.
This package provides an easy way to create interactive KPI (key performance indicator) widgets for Quarto dashboards using Crosstalk'. The package enables visualization of key metrics in a structured format, supporting interactive filtering and linking with other Crosstalk'-enabled components. Designed for use in Quarto Dashboards.
This package provides a fast and computationally efficient algorithm designed to enable researchers to efficiently and quickly extract semantically-related keywords using a fitted embedding model. For more details about the methods applied, see Chester (2025). <doi:10.17605/OSF.IO/5B7RQ>.
This package provides a shiny app to visualize the knowledge networks for the code concepts. Using co-occurrence matrices of EHR codes from Veterans Affairs (VA) and Massachusetts General Brigham (MGB), the knowledge extraction via sparse embedding regression (KESER) algorithm was used to construct knowledge networks for the code concepts. Background and details about the method can be found at Chuan et al. (2021) <doi:10.1038/s41746-021-00519-z>.
Kernel-based Tweedie compound Poisson gamma model using high-dimensional predictors for the analyses of zero-inflated response variables. The package features built-in estimation, prediction and cross-validation tools and supports choice of different kernel functions. For more details, please see Yi Lian, Archer Yi Yang, Boxiang Wang, Peng Shi & Robert William Platt (2023) <doi:10.1080/00401706.2022.2156615>.
Rank-based tests for enrichment of KOG (euKaryotic Orthologous Groups) classes with up- or down-regulated genes based on a continuous measure. The meta-analysis is based on correlation of KOG delta-ranks across datasets (delta-rank is the difference between mean rank of genes belonging to a KOG class and mean rank of all other genes). With binary measure (1 or 0 to indicate significant and non-significant genes), one-tailed Fisher's exact test for over-representation of each KOG class among significant genes will be performed.
State space modelling is an efficient and flexible framework for statistical inference of a broad class of time series and other data. KFAS includes computationally efficient functions for Kalman filtering, smoothing, forecasting, and simulation of multivariate exponential family state space models, with observations from Gaussian, Poisson, binomial, negative binomial, and gamma distributions. See the paper by Helske (2017) <doi:10.18637/jss.v078.i10> for details.
Sequences encoding by using the chaos game representation. Löchel et al. (2019) <doi:10.1093/bioinformatics/btz493>.
Kernel Machine Score Test for Pathway Analysis in the Presence of Semi-Competing Risks. Method is detailed in: Neykov, Hejblum & Sinnott (2018) <doi: 10.1177/0962280216653427>.
This package provides several helper functions for working with knitr and LaTeX'. It includes xTab for creating traditional LaTeX tables, lTab for generating longtable environments, and sTab for generating a supertabular environment. Additionally, this package contains a knitr_setup() function which fixes a well-known bug in knitr', which distorts the results="asis" command when used in conjunction with user-defined commands; and a com command (<<com=TRUE>>=) which renders the output from knitr as a LaTeX command.
The Retained Component Criterion for Principal Component Analysis (RCC_PCA) is a tool to determine the optimal number of components to retain in PCA.
Gaussian process regression with an emphasis on kernels. Quantitative and qualitative inputs are accepted. Some pre-defined kernels are available, such as radial or tensor-sum for quantitative inputs, and compound symmetry, low rank, group kernel for qualitative inputs. The user can define new kernels and composite kernels through a formula mechanism. Useful methods include parameter estimation by maximum likelihood, simulation, prediction and leave-one-out validation.
Kernel smoothing for Wishart random matrices described in Daayeb, Khardani and Ouimet (2025) <doi:10.48550/arXiv.2506.08816>, Gaussian and log-Gaussian models using least square or likelihood cross validation criteria for optimal bandwidth selection.
Many data science problems reduce to operations on very tall, skinny matrices. However, sometimes these matrices can be so tall that they are difficult to work with, or do not even fit into main memory. One strategy to deal with such objects is to distribute their rows across several processors. To this end, we offer an S4 class for tall, skinny, distributed matrices, called the shaq'. We also provide many useful numerical methods and statistics operations for operating on these distributed objects. The naming is a bit "tongue-in-cheek", with the class a play on the fact that Shaquille ONeal ('Shaq') is very tall, and he starred in the film Kazaam'.
Knowledge space theory by Doignon and Falmagne (1999) <doi:10.1007/978-3-642-58625-5> is a set- and order-theoretical framework which proposes mathematical formalisms to operationalize knowledge structures in a particular domain. The kstIO package provides basic functionalities to read and write KST data from/to files to be used together with the kst', kstMatrix', CDSS', pks', or DAKS packages.
An implementation of k-means specifically design to cluster longitudinal data. It provides facilities to deal with missing value, compute several quality criterion (Calinski and Harabatz, Ray and Turie, Davies and Bouldin, BIC, ...) and propose a graphical interface for choosing the best number of clusters.