Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Sensitivity and power analysis, for calculating statistics describing pedigrees from wild populations, and for visualizing pedigrees.
Calculates, via simulation, power and appropriate stopping alpha boundaries (and/or futility bounds) for sequential analyses (i.e., group sequential design) as well as for multiple hypotheses (multiple tests included in an analysis), given any specified global error rate. This enables the sequential use of practically any significance test, as long as the underlying data can be simulated in advance to a reasonable approximation. Lukács (2022) <doi:10.21105/joss.04643>.
Features unstructured, structured and reverse geocoding using the photon geocoding API <https://photon.komoot.io/>. Facilitates the setup of local photon instances to enable offline geocoding.
The introduction of the broom package has made converting model objects into data frames as simple as a single function. While the broom package focuses on providing tidy data frames that can be used in advanced analysis, it deliberately stops short of providing functionality for reporting models in publication-ready tables. pixiedust provides this functionality with a programming interface intended to be similar to ggplot2's system of layers with fine tuned control over each cell of the table. Options for output include printing to the console and to the common markdown formats (markdown, HTML, and LaTeX). With a little pixiedust (and happy thoughts) tables can really fly.
General implementation of core function from phase-type theory. PhaseTypeR can be used to model continuous and discrete phase-type distributions, both univariate and multivariate. The package includes functions for outputting the mean and (co)variance of phase-type distributions; their density, probability and quantile functions; functions for random draws; functions for reward-transformation; and functions for plotting the distributions as networks. For more information on these functions please refer to Bladt and Nielsen (2017, ISBN: 978-1-4939-8377-3) and Campillo Navarro (2019) <https://orbit.dtu.dk/en/publications/order-statistics-and-multivariate-discrete-phase-type-distributio>.
Convert Chinese characters into Pinyin (the official romanization system for Standard Chinese in mainland China, Malaysia, Singapore, and Taiwan. See <https://en.wikipedia.org/wiki/Pinyin> for details), Sijiao (four or five numerical digits per character. See <https://en.wikipedia.org/wiki/Four-Corner_Method>.), Wubi (an input method with five strokes. See <https://en.wikipedia.org/wiki/Wubi_method>) or user-defined codes.
Supports propensity score weighting analysis of observational studies and randomized trials. Enables the estimation and inference of average causal effects with binary and multiple treatments using overlap weights (ATO), inverse probability of treatment weights (ATE), average treatment effect among the treated weights (ATT), matching weights (ATM) and entropy weights (ATEN), with and without propensity score trimming. These weights are members of the family of balancing weights introduced in Li, Morgan and Zaslavsky (2018) <doi:10.1080/01621459.2016.1260466> and Li and Li (2019) <doi:10.1214/19-AOAS1282>.
Quantification of variation in organismal color patterns as obtained from image data. Patternize defines homology between pattern positions across images either through fixed landmarks or image registration. Pattern identification is performed by categorizing the distribution of colors using RGB thresholds or image segmentation.
This package implements optimization techniques for Lasso regression, R.Tibshirani(1996)<doi:10.1111/j.2517-6161.1996.tb02080.x> using Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) and Iterative Shrinkage-Thresholding Algorithm (ISTA) based on proximal operators, A.Beck(2009)<doi:10.1137/080716542>. The package is useful for high-dimensional regression problems and includes cross-validation procedures to select optimal penalty parameters.
Read Protein Data Bank (PDB) files, performs its analysis, and presents the result using different visualization types including 3D. The package also has additional capability for handling Virus Report data from the National Center for Biotechnology Information (NCBI) database. Nature Structural Biology 10, 980 (2003) <doi:10.1038/nsb1203-980>. US National Library of Medicine (2021) <https://www.ncbi.nlm.nih.gov/datasets/docs/reference-docs/data-reports/virus/>.
Examples for integrating package perry for prediction error estimation into regression models.
Derives prediction rule ensembles (PREs). Largely follows the procedure for deriving PREs as described in Friedman & Popescu (2008; <DOI:10.1214/07-AOAS148>), with adjustments and improvements described in Fokkema (2020; <DOI:10.18637/jss.v092.i12>) and Fokkema & Strobl (2020; <DOI:10.1037/met0000256>). The main function pre() derives prediction rule ensembles consisting of rules and/or linear terms for continuous, binary, count, multinomial, survival and multivariate continuous responses. Function gpe() derives generalized prediction ensembles, consisting of rules, hinge and linear functions of the predictor variables.
To build a shiny app for visualization of the hierarchy of PheCode Mapping with International Classification of Diseases (ICD). The same PheCode hierarchy is displayed in two ways: as a sunburst plot and as a tree.
Plot marginal effects for interactions estimated from linear models.
Implementation of PsychroLib <https://github.com/psychrometrics/psychrolib> library which contains functions to enable the calculation properties of moist and dry air in both metric (SI) and imperial (IP) systems of units. References: Meyer, D. and Thevenard, D (2019) <doi:10.21105/joss.01137>.
The document converter pandoc <https://pandoc.org/> is widely used in the R community. One feature of pandoc is that it can produce and consume JSON-formatted abstract syntax trees (AST). This allows to transform a given source document into JSON-formatted AST, alter it by so called filters and pass the altered JSON-formatted AST back to pandoc'. This package provides functions which allow to write such filters in native R code. Although this package is inspired by the Python package pandocfilters <https://github.com/jgm/pandocfilters/>, it provides additional convenience functions which make it simple to use the pandocfilters package as a report generator. Since pandocfilters inherits most of it's functionality from pandoc it can create documents in many formats (for more information see <https://pandoc.org/>) but is also bound to the same limitations as pandoc'.
Simulation of species diversification, fossil records, and phylogenies. While the literature on species birth-death simulators is extensive, including important software like paleotree and APE', we concluded there were interesting gaps to be filled regarding possible diversification scenarios. Here we strove for flexibility over focus, implementing a large array of regimens for users to experiment with and combine. In this way, paleobuddy can be used in complement to other simulators as a flexible jack of all trades, or, in the case of scenarios implemented only here, can allow for robust and easy simulations for novel situations. Environmental data modified from that in RPANDA': Morlon H. et al (2016) <doi:10.1111/2041-210X.12526>.
Identify the characteristics of patients in data mapped to the Observational Medical Outcomes Partnership (OMOP) common data model.
Calculation of the parametric, nonparametric confidence intervals for the difference or ratio of location parameters, nonparametric confidence interval for the Behrens-Fisher problem and for the difference, ratio and odds-ratio of binomial proportions for comparison of independent samples. Common wrapper functions to split data sets and apply confidence intervals or tests to these subsets. A by-statement allows calculation of CI separately for the levels of further factors. CI are not adjusted for multiplicity.
This package provides a collection of functions that can be used to estimate selection and complementarity effects, sensu Loreau & Hector (2001) <doi:10.1038/35083573>, even in cases where data are only available for a random subset of species (i.e. incomplete sample-level data). A full derivation and explanation of the statistical corrections used here is available in Clark et al. (2019) <doi:10.1111/2041-210X.13285>.
This package provides a bunch of convenience functions that transform the results of some basic statistical analyses into table format nearly ready for publication. This includes descriptive tables, tables of logistic regression and Cox regression results as well as forest plots.
It includes functions to download and process the Planet NICFI (Norway's International Climate and Forest Initiative) Satellite Imagery utilizing the Planet Mosaics API <https://developers.planet.com/docs/basemaps/reference/#tag/Basemaps-and-Mosaics>. GDAL (library for raster and vector geospatial data formats) and aria2c (paralleled download utility) must be installed and configured in the user's Operating System.
This package provides path_chain class and functions, which facilitates loading and saving directory structure in YAML configuration files via config package. The file structure you created during exploration can be transformed into legible section in the config file, and then easily loaded for further usage.
This package provides analytic and simulation tools to estimate the minimum sample size required for achieving a target prediction mean-squared error (PMSE) or a specified proportional PMSE reduction (pPMSEr) in linear regression models. Functions implement the criteria of Ma (2023) <https://digital.wpi.edu/downloads/0g354j58c>, support covariance-matrix handling, and include helpers for root-finding and diagnostic plotting.