Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides tools for generating descriptives and report tables for different models, data.frames and tables and exporting them to different formats.
Circular / ring buffers in R and C. There are a couple of different buffers here with different implementations that represent different trade-offs.
Within this package the XML-RPC API to NEOS <https://neos-server.org/neos/> is implemented. This enables the user to pass optimization problems to NEOS and retrieve results within R.
The metrics() function calculates measures of scholarly impact. These include conventional measures, such as the number of publications and the total citations to all publications, as well as modern and robust metrics based on the vector of citations associated with each publication, such as the h index and many of its variants or rivals. These methods are described in Ruscio et al. (2012) <DOI: 10.1080/15366367.2012.711147>.
This package provides a toolbox created by members of the International Union for Conservation of Nature (IUCN) Red List of Ecosystems Committee for Scientific Standards. Primarily, it is a set of tools suitable for calculating the metrics required for making assessments of species and ecosystems against the IUCN Red List of Threatened Species and the IUCN Red List of Ecosystems categories and criteria. See the IUCN website for detailed guidelines, the criteria, publications and other information.
Replication Rate (RR) is the probability of replicating a statistically significant association in genome-wide association studies. This R-package provide the estimation method for replication rate which makes use of the summary statistics from the primary study. We can use the estimated RR to determine the sample size of the replication study, and to check the consistency between the results of the primary study and those of the replication study.
Nuclear Decay Data for Dosimetric Calculations from the International Commission on Radiological Protection from ICRP Publication 107. Ann. ICRP 38 (3). Eckerman, Keith and Endo, Akira 2008 <doi:10.1016/j.icrp.2008.10.004> <https://www.icrp.org/publication.asp?id=ICRP%20Publication%20107>. This is a database of the physical data needed in calculations of radionuclide-specific protection and operational quantities. The data is prescribed by the ICRP, the international authority on radiation dose standards, for estimating dose from the intake of or exposure to radionuclides in the workplace and the environment. The database contains information on the half-lives, decay chains, and yields and energies of radiations emitted in nuclear transformations of 1252 radionuclides of 97 elements.
An extension package for sparklyr that provides an R interface to H2O Sparkling Water machine learning library (see <https://github.com/h2oai/sparkling-water> for more information).
It provides external jars required for the rjdverse (as rjd3toolkit', rjd3x13 and rjd3tramoseats').
Generate random user data from the Random User Generator API. For more information, see <https://randomuser.me/>.
Pointwise generation and display of attractors (prefractals) of the random iterated function system (RIFS) for various combinations of probabilistic and geometric parameters of some fixed point sets (protofractals), described by Bukhovets A.G. (2012) <doi:10.1134/S0005117912020154>.
The regression discontinuity (RD) design is a popular quasi-experimental design for causal inference and policy evaluation. The rdpower package provides tools to perform power, sample size and MDE calculations in RD designs: rdpower() calculates the power of an RD design, rdsampsi() calculates the required sample size to achieve a desired power and rdmde() calculates minimum detectable effects. See Cattaneo, Titiunik and Vazquez-Bare (2019) <https://rdpackages.github.io/references/Cattaneo-Titiunik-VazquezBare_2019_Stata.pdf> for further methodological details.
This package provides a polyhedra database scraped from various sources as R6 objects and rgl visualizing capabilities.
Function to read and write the Stata file format.
Regularized (polychotomous) logistic regression by Gibbs sampling. The package implements subtly different MCMC schemes with varying efficiency depending on the data type (binary v. binomial, say) and the desired estimator (regularized maximum likelihood, or Bayesian maximum a posteriori/posterior mean, etc.) through a unified interface. For details, see Gramacy & Polson (2012 <doi:10.1214/12-BA719>).
Non-linear inversion for hypocenter estimation and analysis of seismic data collected continuously, or in trigger mode. The functions organize other functions from RSEIS and GEOmap to help researchers pick, locate, and store hypocenters for detailed seismic investigation. Error ellipsoids and station influence are estimated via jackknife analysis. References include Iversen, E. S., and J. M. Lees (1996)<doi:10.1785/BSSA0860061853>.
Inspired by Karl Broman`s reader on using knitr with asciidoc (<https://kbroman.org/knitr_knutshell/pages/asciidoc.html>), this is merely a wrapper to knitr and asciidoc'.
R packages for genetics research.
Rolling Window Multiple Correlation ('RolWinMulCor') estimates the rolling (running) window correlation for the bi- and multi-variate cases between regular (sampled on identical time points) time series, with especial emphasis to ecological data although this can be applied to other kinds of data sets. RolWinMulCor is based on the concept of rolling, running or sliding window and is useful to evaluate the evolution of correlation through time and time-scales. RolWinMulCor contains six functions. The first two focus on the bi-variate case: (1) rolwincor_1win() and (2) rolwincor_heatmap(), which estimate the correlation coefficients and the their respective p-values for only one window-length (time-scale) and considering all possible window-lengths or a band of window-lengths, respectively. The second two functions: (3) rolwinmulcor_1win() and (4) rolwinmulcor_heatmap() are designed to analyze the multi-variate case, following the bi-variate case to visually display the results, but these two approaches are methodologically different. That is, the multi-variate case estimates the adjusted coefficients of determination instead of the correlation coefficients. The last two functions: (5) plot_1win() and (6) plot_heatmap() are used to represent graphically the outputs of the four aforementioned functions as simple plots or as heat maps. The functions contained in RolWinMulCor are highly flexible since these contains several parameters to control the estimation of correlation and the features of the plot output, e.g. to remove the (linear) trend contained in the time series under analysis, to choose different p-value correction methods (which are used to address the multiple comparison problem) or to personalise the plot outputs. The RolWinMulCor package also provides examples with synthetic and real-life ecological time series to exemplify its use. Methods derived from H. Abdi. (2007) <https://personal.utdallas.edu/~herve/Abdi-MCC2007-pretty.pdf>, R. Telford (2013) <https://quantpalaeo.wordpress.com/2013/01/04/, J. M. Polanco-Martinez (2019) <doi:10.1007/s11071-019-04974-y>, and J. M. Polanco-Martinez (2020) <doi:10.1016/j.ecoinf.2020.101163>.
This package provides implementations of a classifier based on the "Classification Based on Associations" (CBA). It can be used for building classification models from association rules. Rules are pruned in the order of precedence given by the sort criteria and a default rule is added. The final classifier labels provided instances. CBA was originally proposed by Liu, B. Hsu, W. and Ma, Y. Integrating Classification and Association Rule Mining. Proceedings KDD-98, New York, 27-31 August. AAAI. pp80-86 (1998, ISBN:1-57735-070-7).
This package provides methods to scan RR interval data for Premature Ventricular Complexes (PVCs) and parameterise and plot the resulting Heart Rate Turbulence (HRT). The methodology of HRT analysis is based on the original publication by Schmidt et al. <doi:10.1016/S0140-6736(98)08428-1> and extended with suggestions from <doi:10.1088/1361-6579/ab98b3>.
Convert one biological ID to another of rice (Oryza sativa). Rice(Oryza sativa) has more than one form gene ID for the genome. The two main gene ID for rice genome are the RAP (The Rice Annotation Project, <https://rapdb.dna.affrc.go.jp/>, and the MSU(The Rice Genome Annotation Project, <http://rice.plantbiology.msu.edu/>. All RAP rice gene IDs are of the form Os##g####### as explained on the website <https://rapdb.dna.affrc.go.jp/>. All MSU rice gene IDs are of the form LOC_Os##g##### as explained on the website <http://rice.plantbiology.msu.edu/analyses_nomenclature.shtml>. All SYMBOL rice gene IDs are the unique name on the NCBI(National Center for Biotechnology Information, <https://www.ncbi.nlm.nih.gov/>. The TRANSCRIPTID, is the transcript id of rice, are of the form Os##t#######. The researchers usually need to converter between various IDs. Such as converter RAP to SYMBOLS for function searching on NCBI. There are a lot of websites with the function for converting RAP to MSU or MSU to RA, such as ID Converter <https://rapdb.dna.affrc.go.jp/tools/converter>. But it is difficult to convert super multiple IDs on these websites. The package can convert all IDs between the three IDs (RAP, MSU and SYMBOL) regardless of the number.
This package provides a collection of ROI optimization problems based on the NETLIB-LP collection. Netlib is a software repository, which amongst many other software for scientific computing contains a collection of linear programming problems. The purpose of this package is to make this problems easily accessible from R as ROI optimization problems.
Random forest with a variety of additional features for regression, classification and survival analysis. The features include: parallel computing with OpenMP, embedded model for selecting the splitting variable, based on Zhu, Zeng & Kosorok (2015) <doi:10.1080/01621459.2015.1036994>, subject weight, variable weight, tracking subjects used in each tree, etc.