Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Package to query the Twitter Academic Research Product Track, providing access to full-archive search and other v2 API endpoints. Functions are written with academic research in mind. They provide flexibility in how the user wishes to store collected data, and encourage regular storage of data to mitigate loss when collecting large volumes of tweets. They also provide workarounds to manage and reshape the format in which data is provided on the client side.
Automates regression testing of package allelematch'. Over 2500 tests covers all functions in allelematch', reproduces the examples from the documentation and includes negative tests. The implementation is based on testthat'.
Comprehensive set of tools for performing system identification of both linear and nonlinear dynamical systems directly from data. The Automatic Regression for Governing Equations (ARGOS) simplifies the complex task of constructing mathematical models of dynamical systems from observed input and output data, supporting various types of systems, including those described by ordinary differential equations. It employs optimal numerical derivatives for enhanced accuracy and employs formal variable selection techniques to help identify the most relevant variables, thereby enabling the development of predictive models for system behavior analysis.
Data on Asylum and Resettlement for the UK, provided by the Home Office <https://www.gov.uk/government/statistical-data-sets/immigration-system-statistics-data-tables>.
The Australian Statistical Geography Standard ('ASGS') is a set of shapefiles by the Australian Bureau of Statistics. This package provides an interface to those shapefiles, as well as methods for converting coordinates to shapefiles.
R and C++ functions to perform exact and approximate optimal transport. All C++ methods can be linked to other R packages via their header files.
This package performs archetypal analysis by using Principal Convex Hull Analysis under a full control of all algorithmic parameters. It contains a set of functions for determining the initial solution, the optimal algorithmic parameters and the optimal number of archetypes. Post run tools are also available for the assessment of the derived solution. Morup, M., Hansen, LK (2012) <doi:10.1016/j.neucom.2011.06.033>. Hochbaum, DS, Shmoys, DB (1985) <doi:10.1287/moor.10.2.180>. Eddy, WF (1977) <doi:10.1145/355759.355768>. Barber, CB, Dobkin, DP, Huhdanpaa, HT (1996) <doi:10.1145/235815.235821>. Christopoulos, DT (2016) <doi:10.2139/ssrn.3043076>. Falk, A., Becker, A., Dohmen, T., Enke, B., Huffman, D., Sunde, U. (2018), <doi:10.1093/qje/qjy013>. Christopoulos, DT (2015) <doi:10.1016/j.jastp.2015.03.009> . Murari, A., Peluso, E., Cianfrani, Gaudio, F., Lungaroni, M., (2019), <doi:10.3390/e21040394>.
Plots simulation results of clinical trials. Its main feature is allowing users to simultaneously investigate the impact of several simulation input dimensions through dynamic filtering of the simulation results. A more detailed description of the app can be found in Meyer et al. <DOI:10.1016/j.softx.2023.101347> or the vignettes on GitHub'.
Inference of protein complex states from quantitative proteomics data. The package takes information on known stable protein interactions (i.e. protein components of the same complex) and assesses how protein quantitative ratios change between different conditions. It reports protein pairs for which relative protein quantities to each other have been significantly altered in the tested condition.
Retrieve Amazon EC2 instance metadata from within the running instance.
It performs Canonical Correlation Analysis and provides inferential guaranties on the correlation components. The p-values are computed following the resampling method developed in Winkler, A. M., Renaud, O., Smith, S. M., & Nichols, T. E. (2020). Permutation inference for canonical correlation analysis. NeuroImage, <doi:10.1016/j.neuroimage.2020.117065>. Furthermore, it provides plotting tools to visualize the results.
Allows for multiple group item response theory alignment a la Mplus to be applied to lists of single-group models estimated in lavaan or mirt'. Allows item sets that are overlapping but not identical, facilitating alignment in secondary data analysis where not all items may be shared across assessments.
Data from Gardner and Janson art history textbooks about both the artists featured in these books as well as their works. See Helen Gardner ("Art through the ages; an introduction to its history and significance," 1926, <https://find.library.duke.edu/catalog/DUKE000104481>. Helen Gardner, revised by Horst de la Croix and Richard G. Tansey ("Gardnerâ s Art through the ages," 1980, ISBN: 0155037587). Fred S. Kleiner ("Gardnerâ s art through the ages: a global history," 2020, ISBN: 9781337630702). Horst de la Croix and Richard G. Tansey ("Gardner's art through the ages," 1986, ISBN: 0155037633). Helen Gardner ("Art through the ages; an introduction to its history and significance," 1936, <https://find.library.duke.edu/catalog/DUKE001199463>). Helen Gardner ("Art through the ages," 1948, <https://find.library.duke.edu/catalog/DUKE001199466>). Helen Gardner, revised under the editorship of Sumner M. Crosby ("Art through the ages," 1959, <https://find.library.duke.edu/catalog/DUKE001199469>). Helen Gardner, revised by Horst de la Croix and Richard G. Tansey ("Gardnerâ s Art through the ages," 1975, ISBN: 0155037560). Fred S. Kleiner ("Gardnerâ s Art through the ages: a global history," 2013, ISBN: 9780495915423. Fred S. Kleiner, Christin J. Mamiya, Richard G. Tansey ("Gardnerâ s art through the ages," 2001, ISBN: 0155083155). Fred S. Kleiner ("Gardnerâ s Art through the ages: a global history," 2016, ISBN: 9781285837840). Fred S. Kleiner, Christin J. Mamiya ("Gardnerâ s art through the ages," 2005, ISBN: 0534640958). Helen Gardner, revised by Horst de la Croix and Richard G. Tansey ("Gardnerâ s Art through the ages," 1970, ISBN: 0155037528). Helen Gardner, Richard G. Tansey, Fred S. Kleiner ("Gardnerâ s Art through the ages," 1996, ISBN: 0155011413). Helen Gardner, Horst de la Croix, Richard G. Tansey, Diane Kirkpatrick ("Gardnerâ s Art through the ages," 1991, ISBN: 0155037692). Helen Gardner, Fred S. Kleiner ("Gardnerâ s Art through the ages: a global history," 2009, ISBN: 9780495093077). Davies, Penelope J.E., Walter B. Denny, Frima Fox Hofrichter, Joseph F. Jacobs, Ann S. Roberts, David L. Simon ("Jansonâ s history of art: the western tradition," 2007, ISBN: 0131934554). Davies, Penelope J.E., Walter B. Denny, Frima Fox Hofrichter, Joseph F. Jacobs, Ann S. Roberts, David L. Simon ("Jansonâ s history of art: the western tradition," 2011, ISBN: 9780205685172). H. W. Janson, Anthony F. Janson ("History of Art," 2001, ISBN: 0810934469). H. W. Janson, revised and expanded by Anthony F. Janson ("History of art," 1986, ISBN: 013389388). H. W. Janson, Dora Jane Janson ("History of art: a survey of the major visual arts from the dawn of history to present day," 1977, ISBN: 0810910527). H. W. Janson, Dora Jane Janson ("History of art: a survey of the major visual arts from the dawn of history to present day," 1969, <https://find.library.duke.edu/catalog/DUKE000005734>). H. W. Janson, Dora Jane Janson ("History of art: a survey of the major visual arts from the dawn of history to present day," 1963, <https://find.library.duke.edu/catalog/DUKE001521852>). H. W. Janson, revised and expanded by Anthony F. Janson ("History of art," 1991, ISBN: 0810934019). H. W. Janson, revised and expanded by Anthony F. Janson ("History of art," 1995, ISBN: 0810934213).
Wraps the AT Protocol (Authenticated Transfer Protocol) behind Bluesky <https://bsky.social>. Functions can be used for, among others, retrieving posts and followers from the network or posting content.
Aster models are exponential family regression models for life history analysis. They are like generalized linear models except that elements of the response vector can have different families (e. g., some Bernoulli, some Poisson, some zero-truncated Poisson, some normal) and can be dependent, the dependence indicated by a graphical structure. Discrete time survival analysis, zero-inflated Poisson regression, and generalized linear models that are exponential family (e. g., logistic regression and Poisson regression with log link) are special cases. Main use is for data in which there is survival over discrete time periods and there is additional data about what happens conditional on survival (e. g., number of offspring). Uses the exponential family canonical parameterization (aster transform of usual parameterization). Unlike the aster package, this package does dependence groups (nodes of the graph need not be conditionally independent given their predecessor node), including multinomial and two-parameter normal as families. Thus this package also generalizes mark-capture-recapture analysis.
This package provides functions and examples for the weak and strong density asymmetry measures in the articles: "A measure of asymmetry", Patil, Patil and Bagkavos (2012) <doi:10.1007/s00362-011-0401-6> and "A measure of asymmetry based on a new necessary and sufficient condition for symmetry", Patil, Bagkavos and Wood (2014) <doi:10.1007/s13171-013-0034-z>. The measures provided here are useful for quantifying the asymmetry of the shape of a density of a random variable. The package facilitates implementation of the measures which are applicable in a variety of fields including e.g. probability theory, statistics and economics.
Nonparametric estimation of additive isotonic covariate effects for proportional hazards model.
Made to make your life simpler with packages, by installing and loading a list of packages, whether they are on CRAN, Bioconductor or github. For github, if you do not have the full path, with the maintainer name in it (e.g. "achateigner/topReviGO"), it will be able to load it but not to install it.
This package provides functions to fit the binomial and multinomial additive hazard models and to estimate the contribution of diseases/conditions to the disability prevalence, as proposed by Nusselder and Looman (2004) and extended by Yokota et al (2017).
An implementation of the ALFAM2 dynamic emission model for ammonia volatilization from field-applied animal slurry (manure with dry matter below about 15%). The model can be used to predict cumulative emission and emission rate of ammonia following field application of slurry. Predictions may be useful for emission inventory calculations, fertilizer management, assessment of mitigation strategies, or research aimed at understanding ammonia emission. Default parameter sets include effects of application method, slurry composition, and weather. The model structure is based on a simplified representation of the physical-chemical slurry-soil-atmosphere system. More information is available via citation("ALFAM2").
For researchers to quickly and comprehensively acquire disease genes, so as to understand the mechanism of disease, we developed this program to acquire disease-related genes. The data is integrated from three public databases. The three databases are eDGAR', DrugBank and MalaCards'. The eDGAR is a comprehensive database, containing data on the relationship between disease and genes. DrugBank contains information on 13443 drugs and 5157 targets. MalaCards integrates human disease information, including disease-related genes.
Simulate the effect of management or demography on allele retention and inbreeding accumulation in bottlenecked populations of animals with overlapping generations.
This package provides a collection of several pharmacovigilance signal detection methods based on adaptive lasso. Additional lasso-based and propensity score-based signal detection approaches are also supplied. See Courtois et al <doi:10.1186/s12874-021-01450-3>.
R codes for the (adaptive) Sum of Powered Score ('SPU and aSPU') tests, inverse variance weighted Sum of Powered score ('SPUw and aSPUw') tests and gene-based and some pathway based association tests (Pathway based Sum of Powered Score tests ('SPUpath'), adaptive SPUpath ('aSPUpath') test, GEEaSPU test for multiple traits - single SNP (single nucleotide polymorphism) association in generalized estimation equations, MTaSPUs test for multiple traits - single SNP association with Genome Wide Association Studies ('GWAS') summary statistics, Gene-based Association Test that uses an extended Simes procedure ('GATES'), Hybrid Set-based Test ('HYST') and extended version of GATES test for pathway-based association testing ('GATES-Simes'). ). The tests can be used with genetic and other data sets with covariates. The response variable is binary or quantitative. Summary; (1) Single trait-'SNP set association with individual-level data ('aSPU', aSPUw', aSPUr'), (2) Single trait-'SNP set association with summary statistics ('aSPUs'), (3) Single trait-pathway association with individual-level data ('aSPUpath'), (4) Single trait-pathway association with summary statistics ('aSPUsPath'), (5) Multiple traits-single SNP association with individual-level data ('GEEaSPU'), (6) Multiple traits- single SNP association with summary statistics ('MTaSPUs'), (7) Multiple traits-'SNP set association with summary statistics('MTaSPUsSet'), (8) Multiple traits-pathway association with summary statistics('MTaSPUsSetPath').