Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides a Tcl/Tk GUI for some basic functions in the ade4 package.
This package provides a Shiny application to access the functionalities and datasets of the archeofrag package for spatial analysis in archaeology from refitting data. Quick and seamless exploration of archaeological refitting datasets, focusing on physical refits only. Features include: built-in documentation and convenient workflow, plot generation and exports, anomaly detection in the spatial distribution of refitting connection, exploration of spatial units merging solutions, simulation of archaeological site formation processes, support for parallel computing, R code generation to re-execute simulations and ensure reproducibility, code generation for the openMOLE model exploration software. A demonstration of the app is available at <https://analytics.huma-num.fr/Sebastien.Plutniak/archeofrag/>.
It performs Canonical Correlation Analysis and provides inferential guaranties on the correlation components. The p-values are computed following the resampling method developed in Winkler, A. M., Renaud, O., Smith, S. M., & Nichols, T. E. (2020). Permutation inference for canonical correlation analysis. NeuroImage, <doi:10.1016/j.neuroimage.2020.117065>. Furthermore, it provides plotting tools to visualize the results.
Automated methods to assemble population PK (pharmacokinetic) and PKPD (pharmacodynamic) datasets for analysis in NONMEM (non-linear mixed effects modeling) by Bauer (2019) <doi:10.1002/psp4.12404>. The package includes functions to build datasets from SDTM (study data tabulation module) <https://www.cdisc.org/standards/foundational/sdtm>, ADaM (analysis dataset module) <https://www.cdisc.org/standards/foundational/adam>, or other dataset formats. The package will combine population datasets, add covariates, and create documentation to support regulatory submission and internal communication.
Implementation of adaptive p-value thresholding (AdaPT), including both a framework that allows the user to specify any algorithm to learn local false discovery rate and a pool of convenient functions that implement specific algorithms. See Lei, Lihua and Fithian, William (2016) <arXiv:1609.06035>.
This package provides functions to simulate data sets from hierarchical ecological models, including all the simulations described in the two volume publication Applied Hierarchical Modeling in Ecology: Analysis of distribution, abundance and species richness in R and BUGS by Marc Kéry and Andy Royle: volume 1 (2016, ISBN: 978-0-12-801378-6) and volume 2 (2021, ISBN: 978-0-12-809585-0), <https://www.mbr-pwrc.usgs.gov/pubanalysis/keryroylebook/>. It also has all the utility functions and data sets needed to replicate the analyses shown in the books.
Manage storage in Microsoft's Azure cloud: <https://azure.microsoft.com/en-us/products/category/storage/>. On the admin side, AzureStor includes features to create, modify and delete storage accounts. On the client side, it includes an interface to blob storage, file storage, and Azure Data Lake Storage Gen2': upload and download files and blobs; list containers and files/blobs; create containers; and so on. Authenticated access to storage is supported, via either a shared access key or a shared access signature (SAS). Part of the AzureR family of packages.
This package provides functions that facilitate the use of accepted taxonomic nomenclature, collection of functional trait data, and assignment of functional group classifications to phytoplankton species. Possible classifications include Morpho-functional group (MFG; Salmaso et al. 2015 <doi:10.1111/fwb.12520>) and CSR (Reynolds 1988; Functional morphology and the adaptive strategies of phytoplankton. In C.D. Sandgren (ed). Growth and reproductive strategies of freshwater phytoplankton, 388-433. Cambridge University Press, New York). Versions 2.0.0 and later includes new functions for querying the algaebase online taxonomic database (www.algaebase.org), however these functions require a valid API key that must be acquired from the algaebase administrators. Note that none of the algaeClassify authors are affiliated with algaebase in any way. Taxonomic names can also be checked against a variety of taxonomic databases using the Global Names Resolver service via its API (<https://resolver.globalnames.org/api>). In addition, currently accepted and outdated synonyms, and higher taxonomy, can be extracted for lists of species from the ITIS database using wrapper functions for the ritis package. The algaeClassify package is a product of the GEISHA (Global Evaluation of the Impacts of Storms on freshwater Habitat and Structure of phytoplankton Assemblages), funded by CESAB (Centre for Synthesis and Analysis of Biodiversity) and the U.S. Geological Survey John Wesley Powell Center for Synthesis and Analysis, with data and other support provided by members of GLEON (Global Lake Ecology Observation Network). DISCLAIMER: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.
Computes various stability parameters from Additive Main Effects and Multiplicative Interaction (AMMI) analysis results such as Modified AMMI Stability Value (MASV), Sums of the Absolute Value of the Interaction Principal Component Scores (SIPC), Sum Across Environments of Genotype-Environment Interaction Modelled by AMMI (AMGE), Sum Across Environments of Absolute Value of Genotype-Environment Interaction Modelled by AMMI (AV_(AMGE)), AMMI Stability Index (ASI), Modified ASI (MASI), AMMI Based Stability Parameter (ASTAB), Annicchiarico's D Parameter (DA), Zhang's D Parameter (DZ), Averages of the Squared Eigenvector Values (EV), Stability Measure Based on Fitted AMMI Model (FA), Absolute Value of the Relative Contribution of IPCs to the Interaction (Za). Further calculates the Simultaneous Selection Index for Yield and Stability from the computed stability parameters. See the vignette for complete list of citations for the methods implemented.
Hydrological modelling tools developed at INRAE-Antony (HYCAR Research Unit, France). The package includes several conceptual rainfall-runoff models (GR4H, GR5H, GR4J, GR5J, GR6J, GR2M, GR1A) that can be applied either on a lumped or semi-distributed way. A snow accumulation and melt model (CemaNeige) and the associated functions for the calibration and evaluation of models are also included. Use help(airGR) for package description and references.
This package provides a collection of functions for computing centrographic statistics (e.g., standard distance, standard deviation ellipse, standard deviation box) for observations taken at point locations. Separate plotting functions have been developed for each measure. Users interested in writing results to ESRI shapefiles can do so by using results from aspace functions as inputs to the convert.to.shapefile() and write.shapefile() functions in the shapefiles library. We intend to provide terra integration for geographic data in a future release. The aspace package was originally conceived to aid in the analysis of spatial patterns of travel behaviour (see Buliung and Remmel 2008 <doi:10.1007/s10109-008-0063-7>).
This package provides a customisable set of tools for assessing and grading R or R-markdown scripts from students. It allows for checking correctness of code output, runtime statistics and static code analysis. The latter feature is made possible by representing R expressions using a tree structure.
The main application concerns to a new robust optimization package with two major contributions. The first contribution refers to the assessment of the adequacy of probabilistic models through a combination of several statistics, which measure the relative quality of statistical models for a given data set. The second one provides a general purpose optimization method based on meta-heuristics functions for maximizing or minimizing an arbitrary objective function.
Estimate and plot confounder-adjusted survival curves using either Direct Adjustment', Direct Adjustment with Pseudo-Values', various forms of Inverse Probability of Treatment Weighting', two forms of Augmented Inverse Probability of Treatment Weighting', Empirical Likelihood Estimation or Targeted Maximum Likelihood Estimation'. Also includes a significance test for the difference between two adjusted survival curves and the calculation of adjusted restricted mean survival times. Additionally enables the user to estimate and plot cause-specific confounder-adjusted cumulative incidence functions in the competing risks setting using the same methods (with some exceptions). For details, see Denz et. al (2023) <doi:10.1002/sim.9681>.
This package provides functions to access data from public RESTful APIs including the ArgentinaDatos API', REST Countries API', and World Bank API related to Argentina's exchange rates, inflation, political figures, holidays, economic indicators, and general country-level statistics. Additionally, the package includes curated datasets related to Argentina, covering topics such as economic indicators, biodiversity, agriculture, human rights, genetic data, and consumer prices. The package supports research and analysis focused on Argentina by integrating open APIs with high-quality datasets from various domains. For more details on the APIs, see: ArgentinaDatos API <https://argentinadatos.com/>, REST Countries API <https://restcountries.com/>, and World Bank API <https://datahelpdesk.worldbank.org/knowledgebase/articles/889392>.
Set of functions to analyse and estimate Artificial Counterfactual models from Carvalho, Masini and Medeiros (2016) <DOI:10.2139/ssrn.2823687>.
Utilities for working with hourly air quality monitoring data with a focus on small particulates (PM2.5). A compact data model is structured as a list with two dataframes. A meta dataframe contains spatial and measuring device metadata associated with deployments at known locations. A data dataframe contains a datetime column followed by columns of measurements associated with each "device-deployment". Algorithms to calculate NowCast and the associated Air Quality Index (AQI) are defined at the US Environmental Projection Agency AirNow program: <https://document.airnow.gov/technical-assistance-document-for-the-reporting-of-daily-air-quailty.pdf>.
Estimate the linear and nonlinear autoregressive distributed lag (ARDL & NARDL) models and the corresponding error correction models, and test for longrun and short-run asymmetric. The general-to-specific approach is also available in estimating the ARDL and NARDL models. The Pesaran, Shin & Smith (2001) (<doi:10.1002/jae.616>) bounds test for level relationships is also provided. The ardl.nardl package also performs short-run and longrun symmetric restrictions available at Shin et al. (2014) <doi:10.1007/978-1-4899-8008-3_9> and their corresponding tests.
In mathematics, rejection sampling is a basic technique used to generate observations from a distribution. It is also commonly called the Acceptance-Rejection method or Accept-Reject algorithm and is a type of Monte Carlo method. Acceptance-Rejection method is based on the observation that to sample a random variable one can perform a uniformly random sampling of the 2D cartesian graph, and keep the samples in the region under the graph of its density function. Package AR is able to generate/simulate random data from a probability density function by Acceptance-Rejection method. Moreover, this package is a useful teaching resource for graphical presentation of Acceptance-Rejection method. From the practical point of view, the user needs to calculate a constant in Acceptance-Rejection method, which package AR is able to compute this constant by optimization tools. Several numerical examples are provided to illustrate the graphical presentation for the Acceptance-Rejection Method.
Functionalities to simulate space-time data and to estimate dynamic-spatial panel data models. Estimators implemented are the BCML (Elhorst (2010), <doi:10.1016/j.regsciurbeco.2010.03.003>), the MML (Elhorst (2010) <doi:10.1016/j.regsciurbeco.2010.03.003>) and the INLA Bayesian estimator (Lindgren and Rue, (2015) <doi:10.18637/jss.v063.i19>; Bivand, Gomez-Rubio and Rue, (2015) <doi:10.18637/jss.v063.i20>) adapted to panel data. The package contains functions to replicate the analyses of the scientific article entitled "Agricultural Productivity in Space" (Baldoni and Esposti (2021), <doi:10.1111/ajae.12155>)).
An interactive document on the topic of one-way and two-way analysis of variance using rmarkdown and shiny packages. Runtime examples are provided in the package function as well as at <https://kartikeyab.shinyapps.io/ANOVAShiny/>.
Actuarial reports are prepared for the last day of a specific period, such as a month, a quarter or a year. Actuarial models assume that certain events happen at the beginning or end of periods. The package contains functions to easily refer to the first or last (working) day within a specific period relative to a base date to facilitate actuarial reporting and to compare results.
This package provides functions for Arps decline-curve analysis on oil and gas data. Includes exponential, hyperbolic, harmonic, and hyperbolic-to-exponential models as well as the preceding with initial curtailment or a period of linear rate buildup. Functions included for computing rate, cumulative production, instantaneous decline, EUR, time to economic limit, and performing least-squares best fits.
Comprehensive set of tools for performing system identification of both linear and nonlinear dynamical systems directly from data. The Automatic Regression for Governing Equations (ARGOS) simplifies the complex task of constructing mathematical models of dynamical systems from observed input and output data, supporting various types of systems, including those described by ordinary differential equations. It employs optimal numerical derivatives for enhanced accuracy and employs formal variable selection techniques to help identify the most relevant variables, thereby enabling the development of predictive models for system behavior analysis.