Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package provides functions that wrap HTML Bootstrap components code to enable the design and layout of informative landing home pages for Shiny applications. This can lead to a better user experience for the users and writing less HTML for the developer.
Launch an application by a simple click without opening R or RStudio. The package has 3 functions of which only one is essential in its use, `shiny.exe()`. It generates a script in the open shiny project then create a shortcut in the same folder that allows you to launch the app by clicking.If you set `host = public'`, the application will be launched on the public server to which you are connected. Thus, all other devices connected to the same server will be able to access the application through the link of your `IPv4` extended by the port. You can stop the application by leaving the terminal opened by the shortcut.
Routines to write, simulate, and validate stock-flow consistent (SFC) models. The accounting structure of SFC models are described in Godley and Lavoie (2007, ISBN:978-1-137-08599-3). The algorithms implemented to solve the models (Gauss-Seidel and Broyden) are described in Kinsella and O'Shea (2010) <doi:10.2139/ssrn.1729205> and Peressini and Sullivan (1988, ISBN:0-387-96614-5).
Transformation of sea currents to connectivity data. Two files of horizontal and vertical currents flows are transformed into connectivity data in the form of sfnetwork', shapefile, edge list and adjacency matrix. An application example is shown at Nagkoulis et al. (2025) <doi:10.1016/j.dib.2024.111268>.
An input controller for R Shiny: a matrix with radio buttons, where only one option per row can be selected.
In base R, object attributes are lost when objects are modified by common data operations such as subset, filter, slice, append, extract etc. This packages allows objects to be marked as sticky and have attributes persisted during these operations or when inserted into or extracted from list-like or table-like objects.
Univariate stratification of survey populations with a generalization of the Lavallee-Hidiroglou method of stratum construction. The generalized method takes into account a discrepancy between the stratification variable and the survey variable. The determination of the optimal boundaries also incorporate, if desired, an anticipated non-response, a take-all stratum for large units, a take-none stratum for small units, and a certainty stratum to ensure that some specific units are in the sample. The well known cumulative root frequency rule of Dalenius and Hodges and the geometric rule of Gunning and Horgan are also implemented.
This package implements Bayesian inference in accelerated failure time (AFT) models for right-censored survival times assuming a log-logistic distribution. Details of the variational Bayes algorithms, with and without shared frailty, are described in Xian et al. (2024) <doi:10.1007/s11222-023-10365-6> and Xian et al. (2024) <doi:10.48550/arXiv.2408.00177>, respectively.
Computes the optimal alignment of two character sequences. Visualizes the result of the alignment in a matrix plot. Needleman, Saul B.; Wunsch, Christian D. (1970) "A general method applicable to the search for similarities in the amino acid sequence of two proteins" <doi:10.1016/0022-2836(70)90057-4>.
This package provides methods for the analysis of signed networks. This includes several measures for structural balance as introduced by Cartwright and Harary (1956) <doi:10.1037/h0046049>, blockmodeling algorithms from Doreian (2008) <doi:10.1016/j.socnet.2008.03.005>, various centrality indices, and projections of signed two-mode networks introduced by Schoch (2020) <doi:10.1080/0022250X.2019.1711376>.
This package provides a toolkit for Partially Observed Markov Decision Processes (POMDP). Provides bindings to C++ libraries implementing the algorithm SARSOP (Successive Approximations of the Reachable Space under Optimal Policies) and described in Kurniawati et al (2008), <doi:10.15607/RSS.2008.IV.009>. This package also provides a high-level interface for generating, solving and simulating POMDP problems and their solutions.
This package provides a step-down procedure for controlling the False Discovery Proportion (FDP) in a competition-based setup, implementing Dong et al. (2020) <arXiv:2011.11939>. Such setups include target-decoy competition (TDC) in computational mass spectrometry and the knockoff construction in linear regression.
Calculates sample size for various scenarios, such as sample size to estimate population proportion with stated absolute or relative precision, testing a single proportion with a reference value, to estimate the population mean with stated absolute or relative precision, testing single mean with a reference value and sample size for comparing two unpaired or independent means, comparing two paired means, the sample size For case control studies, estimating the odds ratio with stated precision, testing the odds ratio with a reference value, estimating relative risk with stated precision, testing relative risk with a reference value, testing a correlation coefficient with a specified value, etc. <https://www.academia.edu/39511442/Adequacy_of_Sample_Size_in_Health_Studies#:~:text=Determining%20the%20sample%20size%20for,may%20yield%20statistically%20inconclusive%20results.>.
An entirely data-driven cell type annotation tools, which requires training data to learn the classifier, but not biological knowledge to make subjective decisions. It consists of three steps: preprocessing training and test data, model fitting on training data, and cell classification on test data. See Xiangling Ji,Danielle Tsao, Kailun Bai, Min Tsao, Li Xing, Xuekui Zhang.(2022)<doi:10.1101/2022.02.19.481159> for more details.
Sudoku designs (Bailey et al., 2008<doi:10.1080/00029890.2008.11920542>) can be used as experimental designs which tackle one extra source of variation than conventional Latin square designs. Although Sudoku designs are similar to Latin square designs, only addition is the region concept. Some very important functions related to row-column designs as well as block designs along with basic functions are included in this package.
Fast SVMlight reader and writer. SVMlight is most commonly used format for storing sparse matrices (possibly with some target variable) on disk. For additional information about SVMlight format see <http://svmlight.joachims.org/>.
Semi-distance and mean-variance (MV) index are proposed to measure the dependence between a categorical random variable and a continuous variable. Test of independence and feature screening for classification problems can be implemented via the two dependence measures. For the details of the methods, see Zhong et al. (2023) <doi:10.1080/01621459.2023.2284988>; Cui and Zhong (2019) <doi:10.1016/j.csda.2019.05.004>; Cui, Li and Zhong (2015) <doi:10.1080/01621459.2014.920256>.
Package provides a set of tools for robust estimation and inference for models with sample selectivity and endogenous treatment model. For details, see Zhelonkin and Ronchetti (2021) <doi:10.18637/jss.v099.i04>.
Combine topic modeling and sentiment analysis to identify individual students gaps, and highlight their strengths and weaknesses across predefined competency domains and professional activities.
An open source platform for validation and process control. Tools to analyze data from internal validation of forensic short tandem repeat (STR) kits are provided. The tools are developed to provide the necessary data to conform with guidelines for internal validation issued by the European Network of Forensic Science Institutes (ENFSI) DNA Working Group, and the Scientific Working Group on DNA Analysis Methods (SWGDAM). A front-end graphical user interface is provided. More information about each function can be found in the respective help documentation.
This package contains statistical methods to analyze graphs, such as graph parameter estimation, model selection based on the Graph Information Criterion, statistical tests to discriminate two or more populations of graphs, correlation between graphs, and clustering of graphs. References: Takahashi et al. (2012) <doi:10.1371/journal.pone.0049949>, Fujita et al. (2017) <doi:10.3389/fnins.2017.00066>, Fujita et al. (2017) <doi:10.1016/j.csda.2016.11.016>, Fujita et al. (2019) <doi:10.1093/comnet/cnz028>.
Estimates the authors or speakers of texts. Methods developed in Huang, Perry, and Spirling (2020) <doi:10.1017/pan.2019.49>. The model is built on a Bayesian framework in which the distinctiveness of each speaker is defined by how different, on average, the speaker's terms are to everyone else in the corpus of texts. An optional cross-validation method is implemented to select the subset of terms that generate the most accurate speaker predictions. Once a set of terms is selected, the model can be estimated. Speaker distinctiveness and term influence can be recovered from parameters in the model using package functions. Once fitted, the model can be used to predict authorship of new texts.
This package provides a template system based on AdminLTE3 (<https://adminlte.io/themes/v3/>) theme. Comes with default theme that can be easily customized. Developers can upload modified templates on Github', and users can easily download templates with RStudio project wizard. The key features of the default template include light and dark theme switcher, resizing graphs, synchronizing inputs across sessions, new notification system, fancy progress bars, and card-like flip panels with back sides, as well as various of HTML tool widgets.
This package provides functions for sample size estimation and simulation in clinical trials. Includes methods for selecting the best group using the Indifference-zone approach, as well as designs for non-inferiority, equivalence, and negative binomial models. For the sample size calculation for non-inferiority of vaccines, the approach is based on Fleming, Powers, and Huang (2021) <doi:10.1177/1740774520988244>. The Indifference-zone approach is based on Sobel and Huyett (1957) <doi:10.1002/j.1538-7305.1957.tb02411.x> and Bechhofer, Santner, and Goldsman (1995, ISBN:978-0-471-57427-9).