Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
The Statistical Package for REliability Data Analysis (SPREDA) implements recently-developed statistical methods for the analysis of reliability data. Modern technological developments, such as sensors and smart chips, allow us to dynamically track product/system usage as well as other environmental variables, such as temperature and humidity. We refer to these variables as dynamic covariates. The package contains functions for the analysis of time-to-event data with dynamic covariates and degradation data with dynamic covariates. The package also contains functions that can be used for analyzing time-to-event data with right censoring, and with left truncation and right censoring. Financial support from NSF and DuPont are acknowledged.
This is a wrapper of the React library React-Toastify'. It allows to show some notifications (toasts) in Shiny applications. There are options for the style, the position, the transition effect, and more.
This package provides a workflow based on machine learning methods to construct and compare single-cell gene regulatory networks (scGRN) using single-cell RNA-seq (scRNA-seq) data collected from different conditions. Uses principal component regression, tensor decomposition, and manifold alignment, to accurately identify even subtly shifted gene expression programs. See <doi:10.1016/j.patter.2020.100139> for more details.
This package performs estimation and testing of the treatment effect in a 2-group randomized clinical trial with a quantitative, dichotomous, or right-censored time-to-event endpoint. The method improves efficiency by leveraging baseline predictors of the endpoint. The inverse probability weighting technique of Robins, Rotnitzky, and Zhao (JASA, 1994) is used to provide unbiased estimation when the endpoint is missing at random.
This package provides functions to implement the stability controlled quasi-experiment (SCQE) approach to study the effects of newly adopted treatments that were not assigned at random. This package contains tools to help users avoid making statistical assumptions that rely on infeasible assumptions. Methods developed in Hazlett (2019) <doi:10.1002/sim.8717>.
This package provides a minimalist implementation of model stacking by Wolpert (1992) <doi:10.1016/S0893-6080(05)80023-1> for boosted tree models. A classic, two-layer stacking model is implemented, where the first layer generates features using gradient boosting trees, and the second layer employs a logistic regression model that uses these features as inputs. Utilities for training the base models and parameters tuning are provided, allowing users to experiment with different ensemble configurations easily. It aims to provide a simple and efficient way to combine multiple gradient boosting models to improve predictive model performance and robustness.
High dimensional time to events data analysis with variable selection technique. Currently support LASSO, clustering and Bonferroni's correction.
Computes confidence intervals for variance using the Chi-Square distribution, without requiring raw data. Wikipedia (2025) <https://en.wikipedia.org/wiki/Chi-squared_distribution>. All-in-One Chi Distribution CI provides functions to calculate confidence intervals for the population variance based on a chi-squared distribution, utilizing a sample variance and sample size. It offers only a simple all-in-one method for quick calculations to find the CI for Chi Distribution.
Implementation of various estimation methods for dynamic factor models (DFMs) including principal components analysis (PCA) Stock and Watson (2002) <doi:10.1198/016214502388618960>, 2Stage Giannone et al. (2008) <doi:10.1016/j.jmoneco.2008.05.010>, expectation-maximisation (EM) Banbura and Modugno (2014) <doi:10.1002/jae.2306>, and the novel EM-sparse approach for sparse DFMs Mosley et al. (2023) <arXiv:2303.11892>. Options to use classic multivariate Kalman filter and smoother (KFS) equations from Shumway and Stoffer (1982) <doi:10.1111/j.1467-9892.1982.tb00349.x> or fast univariate KFS equations from Koopman and Durbin (2000) <doi:10.1111/1467-9892.00186>, and options for independent and identically distributed (IID) white noise or auto-regressive (AR(1)) idiosyncratic errors. Algorithms coded in C++ and linked to R via RcppArmadillo'.
Forms likelihood-based confidence intervals (LBCIs) for parameters in structural equation modeling, introduced in Cheung and Pesigan (2023) <doi:10.1080/10705511.2023.2183860>. Currently implements the algorithm illustrated by Pek and Wu (2018) <doi:10.1037/met0000163>, and supports the robust LBCI proposed by Falk (2018) <doi:10.1080/10705511.2017.1367254>.
This sparklyr extension makes Flint time series library functionalities (<https://github.com/twosigma/flint>) easily accessible through R.
This package implements a method for fitting a bounded probability distribution to quantiles (for example stated by an expert), see Bornkamp and Ickstadt (2009) for details. For this purpose B-splines are used, and the density is obtained by penalized least squares based on a Brier entropy penalty. The package provides methods for fitting the distribution as well as methods for evaluating the underlying density and cdf. In addition methods for plotting the distribution, drawing random numbers and calculating quantiles of the obtained distribution are provided.
Making specification curve analysis easy, fast, and pretty. It improves upon existing offerings with additional features and tidyverse integration. Users can easily visualize and evaluate how their models behave under different specifications with a high degree of customization. For a description and applications of specification curve analysis see Simonsohn, Simmons, and Nelson (2020) <doi:10.1038/s41562-020-0912-z>.
Sometimes it is useful to serve up alternative shiny UIs depending on information passed in the request object, such as the value of a cookie or a query parameter. This packages facilitates such switches.
This package provides a set of functions to quantify and visualise social autocorrelation.
This package provides a comprehensive Shiny application for analyzing Whole Genome Duplication ('WGD') events. This package provides a user-friendly Shiny web application for non-experienced researchers to prepare input data and execute command lines for several well-known WGD analysis tools, including wgd', ksrates', i-ADHoRe', OrthoFinder', and Whale'. This package also provides the source code for experienced researchers to adjust and install the package to their own server. Key Features 1) Input Data Preparation This package allows users to conveniently upload and format their data, making it compatible with various WGD analysis tools. 2) Command Line Generation This package automatically generates the necessary command lines for selected WGD analysis tools, reducing manual errors and saving time. 3) Visualization This package offers interactive visualizations to explore and interpret WGD results, facilitating in-depth WGD analysis. 4) Comparative Genomics Users can study and compare WGD events across different species, aiding in evolutionary and comparative genomics studies. 5) User-Friendly Interface This Shiny web application provides an intuitive and accessible interface, making WGD analysis accessible to researchers and bioinformaticians of all levels.
This package provides standardized effect decomposition (direct, indirect, and total effects) for three major structural equation modeling frameworks: lavaan', piecewiseSEM', and plspm'. Automatically handles zero-effect variables, generates publication-ready ggplot2 visualizations, and returns both wide-format and long-format effect tables. Supports effect filtering, multi-model object inputs, and customizable visualization parameters. For a general overview of the methods used in this package, see Rosseel (2012) <doi:10.18637/jss.v048.i02> and Lefcheck (2016) <doi:10.1111/2041-210X.12512>.
This package provides a set of methods to implement Generalized Method of Moments and Maximal Likelihood methods for Random Utility Models. These methods are meant to provide inference on rank comparison data. These methods accept full, partial, and pairwise rankings, and provides methods to break down full or partial rankings into their pairwise components. Please see Generalized Method-of-Moments for Rank Aggregation from NIPS 2013 for a description of some of our methods.
The QuadTree data structure is useful for fast, neighborhood-restricted lookups. We use it to implement fast k-Nearest Neighbor and Rectangular range lookups in 2 dimenions. The primary target is high performance interactive graphics.
Deals with Young tableaux (field of combinatorics). For standard Young tabeaux, performs enumeration, counting, random generation, the Robinson-Schensted correspondence, and conversion to and from paths on the Young lattice. Also performs enumeration and counting of semistandard Young tableaux, enumeration of skew semistandard Young tableaux, enumeration of Gelfand-Tsetlin patterns, and computation of Kostka numbers.
Support for reading and writing files in StatDataML---an XML-based data exchange format.
Allows to connect selectizeInputs widgets as filters to a reactable table. As known from spreadsheet applications, column filters are interdependent, so each filter only shows the values that are really available at the moment based on the current selection in other filters. Filter values currently not available (and also those being available) can be shown via popovers or tooltips.
This package implements a group-bridge penalized function-on-scalar regression model proposed by Wang et al. (2023) <doi:10.1111/biom.13684>, to simultaneously estimate functional coefficient and recover the local sparsity.
This package provides a flexible framework combining variable screening and random projection techniques for fitting ensembles of predictive generalized linear models to high-dimensional data. Designed for extensibility, the package implements key techniques as S3 classes with user-friendly constructors, enabling easy integration and development of new procedures for high-dimensional applications. For more details see Parzer et al (2024a) <doi:10.48550/arXiv.2312.00130> and Parzer et al (2024b) <doi:10.48550/arXiv.2410.00971>.