Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
This package performs the random projection test (Lopes et al., (2011) <doi:10.48550/arXiv.1108.2401>) for the one-sample and two-sample hypothesis testing problem for equality of means in the high dimensional setting. We are interested in detecting the mean vector in the one-sample problem or the difference between mean vectors in the two-sample problem.
We implement the algorithm estimating the parameters of the robust regression model with compositional covariates. The model simultaneously treats outliers and provides reliable parameter estimates. Publication reference: Mishra, A., Mueller, C.,(2019) <arXiv:1909.04990>.
These tools help you to assess if a corporate lending portfolio aligns with climate goals. They summarize key climate indicators attributed to the portfolio (e.g. production, emission factors), and calculate alignment targets based on climate scenarios. They implement in R the last step of the free software PACTA (Paris Agreement Capital Transition Assessment; <https://www.transitionmonitor.com/>). Financial institutions use PACTA to study how their capital allocation decisions align with climate change mitigation goals.
We implement full-ranked, rank-penalized, and adaptive nuclear norm penalized estimation methods using multivariate mixture models proposed by Kang, Chen, and Yao (2022+).
Accesses the California Academy of Sciences Eschmeyer's Catalog of Fishes in R using web requests. The Catalog of fishes is the leading authority in fish taxonomy. Functions in the package allow users to search for fish taxa and valid names, retrieve taxonomic references, retrieve monthly taxonomic changes, obtain natural history collection information, and see the number of species by taxonomic group. For more information on the Catalog: Fricke, R., Eschmeyer, W. N. & R. van der Laan (eds) 2025. ESCHMEYER'S CATALOG OF FISHES <https://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp>.
The detection of troubling approximate collinearity in a multiple linear regression model is a classical problem in Econometrics. This package is focused on determining whether or not the degree of approximate multicollinearity in a multiple linear regression model is of concern, meaning that it affects the statistical analysis (i.e. individual significance tests) of the model. This objective is achieved by using the variance inflation factor redefined and the scatterplot between the variance inflation factor and the coefficient of variation. For more details see Salmerón R., Garcà a C.B. and Garcà a J. (2018) <doi:10.1080/00949655.2018.1463376>, Salmerón, R., Rodrà guez, A. and Garcà a C. (2020) <doi:10.1007/s00180-019-00922-x>, Salmerón, R., Garcà a, C.B, Rodrà guez, A. and Garcà a, C. (2022) <doi:10.32614/RJ-2023-010>, Salmerón, R., Garcà a, C.B. and Garcà a, J. (2025) <doi:10.1007/s10614-024-10575-8> and Salmerón, R., Garcà a, C.B, Garcà a J. (2023, working paper) <doi:10.48550/arXiv.2005.02245>. You can also view the package vignette using browseVignettes("rvif")', the package website (<https://www.ugr.es/local/romansg/rvif/index.html>) using browseURL(system.file("docs/index.html", package = "rvif")) or version control on GitHub (<https://github.com/rnoremlas/rvif_package>).
This package provides a comprehensive collection of practical and easy-to-use tools for regression analysis of recurrent events, with or without the presence of a (possibly) informative terminal event described in Chiou et al. (2023) <doi:10.18637/jss.v105.i05>. The modeling framework is based on a joint frailty scale-change model, that includes models described in Wang et al. (2001) <doi:10.1198/016214501753209031>, Huang and Wang (2004) <doi:10.1198/016214504000001033>, Xu et al. (2017) <doi:10.1080/01621459.2016.1173557>, and Xu et al. (2019) <doi:10.5705/SS.202018.0224> as special cases. The implemented estimating procedure does not require any parametric assumption on the frailty distribution. The package also allows the users to specify different model forms for both the recurrent event process and the terminal event.
Assess LCâ MS system performance by visualizing instrument log files and monitoring raw quality control samples within a project.
This package provides a machine learning algorithm that merges satellite and ground precipitation data using Random Forest for spatial prediction, residual modeling for bias correction, and quantile mapping for adjustment, ensuring accurate estimates across temporal scales and regions.
This package provides a machine learning package for automatic text classification that makes it simple for novice users to get started with machine learning, while allowing experienced users to easily experiment with different settings and algorithm combinations. The package includes eight algorithms for ensemble classification (svm, slda, boosting, bagging, random forests, glmnet, decision trees, neural networks), comprehensive analytics, and thorough documentation.
Reference-based multiple imputation of ordinal and binary responses under Bayesian framework, as described in Wang and Liu (2022) <arXiv:2203.02771>. Methods for missing-not-at-random include Jump-to-Reference (J2R), Copy Reference (CR), and Delta Adjustment which can generate tipping point analysis.
This package provides 3D plotting routines that facilitate the use of the rgl package and extend its functionality. For example, the routines allow the user to directly control the camera position & orientation, as well as to generate 3D movies with a moving observer.
This package provides tools for linear, nonlinear and nonparametric regression and classification. Novel graphical methods for assessment of parametric models using nonparametric methods. One vs. All and All vs. All multiclass classification, optional class probabilities adjustment. Nonparametric regression (k-NN) for general dimension, local-linear option. Nonlinear regression with Eickert-White method for dealing with heteroscedasticity. Utilities for converting time series to rectangular form. Utilities for conversion between factors and indicator variables. Some code related to "Statistical Regression and Classification: from Linear Models to Machine Learning", N. Matloff, 2017, CRC, ISBN 9781498710916.
This package provides an interface to many endpoints of Mixpanel's Data Export, Engage and JQL API. The R functions allow for event and profile data export as well as for segmentation, retention, funnel and addiction analysis. Results are always parsed into convenient R objects. Furthermore it is possible to load and update profiles.
Plot regression surfaces and marginal effects in three dimensions. The plots are plotly objects and can be customized using functions and arguments from the plotly package.
Takes matched and unmatched data and calculates Rosenbaum bounds for the treatment effect. Calculates bounds for binary outcome data, Hodges-Lehmann point estimates, Wilcoxon signed-rank test for matched data and matched IV estimators, Wilcoxon sum rank test, and for data with multiple matched controls. The sensitivity analysis methods in this package are documented in Rosenbaum (2002) Observational Studies, <doi:10.1007/978-1-4757-3692-2>, Springer-Verlag.
Collection of models and analysis methods used in regional and urban economics and (quantitative) economic geography, e.g. measures of inequality, regional disparities and convergence, regional specialization as well as accessibility and spatial interaction models.
Defines the underlying pipeline structure for reproducible neuroscience, adopted by RAVE (reproducible analysis and visualization of intracranial electroencephalography); provides high-level class definition to build, compile, set, execute, and share analysis pipelines. Both R and Python are supported, with Markdown and shiny dashboard templates for extending and building customized pipelines. See the full documentations at <https://rave.wiki>; to cite us, check out our paper by Magnotti, Wang, and Beauchamp (2020, <doi:10.1016/j.neuroimage.2020.117341>), or run citation("ravepipeline") for details.
Interface to easily access data via the United States Department of Agriculture (USDA)'s Agricultural Resource Management Survey (ARMS) Data API <https://www.ers.usda.gov/developer/data-apis/arms-data-api/>. The downloaded data can be saved for later off-line use. Also provide relevant information and metadata for each of the input variables needed for sending the data inquery.
Enhances the R Optimization Infrastructure ('ROI') package with the DEoptim and DEoptimR package. DEoptim is used for unconstrained optimization and DEoptimR for constrained optimization.
Robust methods for high-dimensional data, in particular linear model selection techniques based on least angle regression and sparse regression. Specifically, the package implements robust least angle regression (Khan, Van Aelst & Zamar, 2007; <doi:10.1198/016214507000000950>), (robust) groupwise least angle regression (Alfons, Croux & Gelper, 2016; <doi:10.1016/j.csda.2015.02.007>), and sparse least trimmed squares regression (Alfons, Croux & Gelper, 2013; <doi:10.1214/12-AOAS575>).
Suppose we have a data matrix, which is the superposition of a low-rank component and a sparse component. Candes, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis?. Journal of the ACM (JACM), 58(3), 11. prove that we can recover each component individually under some suitable assumptions. It is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the L1 norm. This package implements this decomposition algorithm resulting with Robust PCA approach.
Create tests and tasks compliant with the Question & Test Interoperability (QTI) information model version 2.1. Input sources are Rmd/md description files or S4-class objects. Output formats include standalone zip or xml files. Supports the generation of basic task types (single and multiple choice, order, pair association, matching tables, filling gaps and essay) and provides a comprehensive set of attributes for customizing tests.
The getconf command-line tool provided by libc allows querying of a large number of system variables. This package provides similar functionality.