Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Handles both vector and matrices, using a flexible S4 class for automatic differentiation. The method used is forward automatic differentiation. Many functions and methods have been defined, so that in most cases, functions written without automatic differentiation in mind can be used without change.
This package provides functions that provide statistical methods for interval-censored (grouped) data. The package supports the estimation of linear and linear mixed regression models with interval-censored dependent variables. Parameter estimates are obtained by a stochastic expectation maximization algorithm. Furthermore, the package enables the direct (without covariates) estimation of statistical indicators from interval-censored data via an iterative kernel density algorithm. Survey and Organisation for Economic Co-operation and Development (OECD) weights can be included into the direct estimation (see, Walter, P. (2019) <doi:10.17169/refubium-1621>).
Datasets and functions for the book "Statistiques pour lâ économie et la gestion", "Théorie et applications en entreprise", F. Bertrand, Ch. Derquenne, G. Dufrénot, F. Jawadi and M. Maumy, C. Borsenberger editor, (2021, ISBN:9782807319448, De Boeck Supérieur, Louvain-la-Neuve). The first chapter of the book is dedicated to an introduction to statistics and their world. The second chapter deals with univariate exploratory statistics and graphics. The third chapter deals with bivariate and multivariate exploratory statistics and graphics. The fourth chapter is dedicated to data exploration with Principal Component Analysis. The fifth chapter is dedicated to data exploration with Correspondance Analysis. The sixth chapter is dedicated to data exploration with Multiple Correspondance Analysis. The seventh chapter is dedicated to data exploration with automatic clustering. The eighth chapter is dedicated to an introduction to probability theory and classical probability distributions. The ninth chapter is dedicated to an estimation theory, one-sample and two-sample tests. The tenth chapter is dedicated to an Gaussian linear model. The eleventh chapter is dedicated to an introduction to time series. The twelfth chapter is dedicated to an introduction to probit and logit models. Various example datasets are shipped with the package as well as some new functions.
This package provides a suite of functions that allow a full, fast, and efficient Bayesian treatment of the Bradley--Terry model. Prior assumptions about the model parameters can be encoded through a multivariate normal prior distribution. Inference is performed using a latent variable representation of the model.
This package provides a time input widget for Shiny. This widget allows intuitive time input in the [hh]:[mm]:[ss] or [hh]:[mm] (24H) format by using a separate numeric input for each time component. The interface with R uses date-time objects. See the project page for more information and examples.
Routines for solving large systems of linear equations and eigenproblems in R. Direct and iterative solvers from the Eigen C++ library are made available. Solvers include Cholesky, LU, QR, and Krylov subspace methods (Conjugate Gradient, BiCGSTAB). Dense and sparse problems are supported.
Insert Glide JavaScript component into Shiny applications for carousel or assistant-like user interfaces.
Structural handling of identity numbers used in the Swedish administration such as personal identity numbers ('personnummer') and organizational identity numbers ('organisationsnummer').
Uses a novel rank-based nonparametric approach to evaluate a surrogate marker in a small sample size setting. Details are described in Parast et al (2024) <doi:10.1093/biomtc/ujad035> and Hughes A et al (2025) <doi:10.1002/sim.70241>. A tutorial for this package can be found at <https://www.laylaparast.com/surrogaterank> and a Shiny App implementing the package can be found at <https://parastlab.shinyapps.io/SurrogateRankApp/>.
Algorithms of nonparametric sequential test and online change-point detection for streams of univariate (sub-)Gaussian, binary, and bounded random variables, introduced in following publications - Shin et al. (2024) <doi:10.48550/arXiv.2203.03532>, Shin et al. (2021) <doi:10.48550/arXiv.2010.08082>.
Used for creating swimmers plots with functions to customize the bars, add points, add lines, add text, and add arrows.
This package implements the structural forest methodology for the heterogeneous newsvendor model. The package provides tools to prepare data, fit honest newsvendor trees and forests, and obtain point and distributional predictions for demand decisions under uncertainty.
This package provides a covariance estimator for multivariate normal data that is sparse and positive definite. Implements the majorize-minimize algorithm described in Bien, J., and Tibshirani, R. (2011), "Sparse Estimation of a Covariance Matrix," Biometrika. 98(4). 807--820.
Presidential Election data of "Sri Lanka"" is stored in Pdf files, through Pdf scraping they are converted into data-frames and stored in this R package.
This package provides functions that wrap HTML Bootstrap components code to enable the design and layout of informative landing home pages for Shiny applications. This can lead to a better user experience for the users and writing less HTML for the developer.
Implementation of several recent multivariate bias correction methods with a unified interface to facilitate their use. A description and comparison between methods can be found in <doi:10.5194/esd-11-537-2020>.
Decompose a time series into seasonal, trend, and remainder components using an implementation of Seasonal Decomposition of Time Series by Loess (STL) that provides several enhancements over the STL method in the stats package. These enhancements include handling missing values, providing higher order (quadratic) loess smoothing with automated parameter choices, frequency component smoothing beyond the seasonal and trend components, and some basic plot methods for diagnostics.
Provide regularized maximum covariance analysis incorporating smoothness, sparseness and orthogonality of couple patterns by using the alternating direction method of multipliers algorithm. The method can be applied to either regularly or irregularly spaced data, including 1D, 2D, and 3D (Wang and Huang, 2018 <doi:10.1002/env.2481>).
This package provides ggplot2 extensions to construct glyph-maps for visualizing seasonality in spatiotemporal data. See the Journal of Statistical Software reference: Zhang, H. S., Cook, D., Laa, U., Langrené, N., & Menéndez, P. (2024) <doi:10.18637/jss.v110.i07>. The manuscript for this package is currently under preparation and can be found on GitHub at <https://github.com/maliny12/paper-sugarglider>.
This package provides basic functions that support an implementation of (discrete) choice experiments (CEs). CEs is a question-based survey method measuring people's preferences for goods/services and their characteristics. Refer to Louviere et al. (2000) <doi:10.1017/CBO9780511753831> for details on CEs, and Aizaki (2012) <doi:10.18637/jss.v050.c02> for the package.
Variable and interaction selection are essential to classification in high-dimensional setting. In this package, we provide the implementation of SODA procedure, which is a forward-backward algorithm that selects both main and interaction effects under logistic regression and quadratic discriminant analysis. We also provide an extension, S-SODA, for dealing with the variable selection problem for semi-parametric models with continuous responses.
Connect to a remote server over SSH to transfer files via SCP, setup a secure tunnel, or run a command or script on the host while streaming stdout and stderr directly to the client.
Reliability and agreement analyses often have limited software support. Therefore, this package was created to make agreement and reliability analyses easier for the average researcher. The functions within this package include simple tests of agreement, agreement analysis for nested and replicate data, and provide robust analyses of reliability. In addition, this package contains a set of functions to help when planning studies looking to assess measurement agreement.
Data in multidimensional systems is obtained from operational systems and is transformed to adapt it to the new structure. Frequently, the operations to be performed aim to transform a flat table into a star schema. Transformations can be carried out using professional extract, transform and load tools or tools intended for data transformation for end users. With the tools mentioned, this transformation can be carried out, but it requires a lot of work. The main objective of this package is to define transformations that allow obtaining stars from flat tables easily. In addition, it includes basic data cleaning, dimension enrichment, incremental data refresh and query operations, adapted to this context.