Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
An automatic cell type detection and assignment algorithm for single cell RNA-Seq and Cytof/FACS data. SCINA is capable of assigning cell type identities to a pool of cells profiled by scRNA-Seq or Cytof/FACS data with prior knowledge of markers, such as genes and protein symbols that are highly or lowly expressed in each category. See Zhang Z, et al (2019) <doi:10.3390/genes10070531> for more details.
Adds variable-selection functions for Beta regression models (both mean and phi submodels) so they can be used within the SelectBoost algorithm. Includes stepwise AIC, BIC, and corrected AIC on betareg() fits, gamlss'-based LASSO/Elastic-Net, a pure glmnet iterative re-weighted least squares-based selector with an optional standardization speedup, and C++ helpers for iterative re-weighted least squares working steps and precision updates. Also provides a fastboost_interval() variant for interval responses, comparison helpers, and a flexible simulator simulation_DATA.beta() for interval-valued data. For more details see Bertrand and Maumy (2023) <doi:10.7490/f1000research.1119552.1>.
Implementation of popular mortality models using the rstan package, which provides the R interface to the Stan C++ library for Bayesian estimation. The package supports well-known models proposed in the actuarial and demographic literature including the Lee-Carter (1992) <doi:10.1080/01621459.1992.10475265> and the Cairns-Blake-Dowd (2006) <doi:10.1111/j.1539-6975.2006.00195.x> models. By a simple call, the user inputs deaths and exposures and the package outputs the MCMC simulations for each parameter, the log likelihoods and predictions. Moreover, the package includes tools for model selection and Bayesian model averaging by leave future-out validation.
This package performs inference for a class of measures to compare competing risk prediction models with censored survival data. The class includes the integrated discrimination improvement index (IDI) and category-less net reclassification index (NRI).
Simulate populations with desired properties and extract respondent driven samples. To better understand the usage of the package and the algorithm used, please refer to Perera, A., and Ramanayake, A. (2019) <https://www.aimr.tirdiconference.com/assets/images/portfolio/Conference-Proceeding-AIMR-19.pdf>.
This package provides tools for using the StreamCat and LakeCat API and interacting with the StreamCat and LakeCat database. Convenience functions in the package wrap the API for StreamCat on <https://api.epa.gov/StreamCat/streams/metrics>.
This package provides a network module-based generalized linear model for differential expression analysis with the count-based sequence data from RNA-Seq.
This package provides a new reduced-rank LDA method which works for high dimensional multi-class data.
Sampling procedures from the book Stichproben - Methoden und praktische Umsetzung mit R by Goeran Kauermann and Helmut Kuechenhoff (2010).
Renders plots to a temporary image using the ragg graphics device and returns knitr::include_graphics() output. Optionally saves the image to a specified path. This helps ensure consistent appearance across interactive sessions, saved files, and knitted documents. For more details see Pedersen and Shemanarev (2025) <doi: 10.32614/CRAN.package.ragg>.
This package provides methods for computing spatial, temporal, and spatiotemporal statistics as described in Gouhier and Guichard (2014) <doi:10.1111/2041-210X.12188>. These methods include empirical univariate, bivariate and multivariate variograms; fitting variogram models; phase locking and synchrony analysis; generating autocorrelated and cross-correlated matrices.
Estimates previously compiled state-space modeling for mouse-tracking experiments using the rstan package, which provides the R interface to the Stan C++ library for Bayesian estimation.
This package implements the revised Synthetic Matching Algorithm of Kreitmeir, Lane, and Raschky (2025) <doi:10.2139/ssrn.3751162>, building on the original approach of Acemoglu, Johnson, Kermani, Kwak, and Mitton (2016) <doi:10.1016/j.jfineco.2015.10.001>, to estimate the cumulative treatment effect of an event on treated firmsâ stock returns.
Fitting and plotting parametric or non-parametric size-biased non-negative distributions, with optional covariates if parametric. Rowcliffe, M. et al. (2016) <doi:10.1002/rse2.17>.
This package provides a set of statistical tools for spatio-temporal data exploration. Includes simple plotting functions, covariance calculations and computations similar to principal component analysis for spatio-temporal data. Can use both dataframes and stars objects for all plots and computations. For more details refer Spatio-Temporal Statistics with R (Christopher K. Wikle, Andrew Zammit-Mangion, Noel Cressie, 2019, ISBN:9781138711136).
An algorithm for identifying high-resolution driver elements for datasets from a high-definition reporter assay library. Xinchen Wang, Liang He, Sarah Goggin, Alham Saadat, Li Wang, Melina Claussnitzer, Manolis Kellis (2017) <doi:10.1101/193136>.
This package provides functions to calculate step- and cadence-based metrics from timestamped accelerometer and wearable device data. Supports CSV and AGD files from ActiGraph devices, CSV files from Fitbit devices, and step counts derived with R package GGIR <https://github.com/wadpac/GGIR>, with automatic handling of epoch lengths from 1 to 60 seconds. Metrics include total steps, cadence peaks, minutes and steps in predefined cadence bands, and time and steps in moderate-to-vigorous physical activity (MVPA). Methods and thresholds are informed by the literature, e.g., Tudor-Locke and Rowe (2012) <doi:10.2165/11599170-000000000-00000>, Barreira et al. (2012) <doi:10.1249/MSS.0b013e318254f2a3>, and Tudor-Locke et al. (2018) <doi:10.1136/bjsports-2017-097628>. The package record is also available on Zenodo (2023) <doi:10.5281/zenodo.7858094>.
This package provides a comprehensive logging framework for R applications that provides hierarchical logging levels, database integration, and contextual logging capabilities. The package supports SQLite storage for persistent logs, provides colour-coded console output for better readability, includes parallel processing support, and implements structured error reporting with JSON formatting.
Implementation of prediction and inference procedures for Synthetic Control methods using least square, lasso, ridge, or simplex-type constraints. Uncertainty is quantified with prediction intervals as developed in Cattaneo, Feng, and Titiunik (2021) <doi:10.1080/01621459.2021.1979561> for a single treated unit and in Cattaneo, Feng, Palomba, and Titiunik (2025) <doi:10.1162/rest_a_01588> for multiple treated units and staggered adoption. More details about the software implementation can be found in Cattaneo, Feng, Palomba, and Titiunik (2025) <doi:10.18637/jss.v113.i01>.
This package provides functions to compute split generalized linear models. The approach fits generalized linear models that split the covariates into groups. The optimal split of the variables into groups and the regularized estimation of the coefficients are performed by minimizing an objective function that encourages sparsity within each group and diversity among them. Example applications can be found in Christidis et al. (2021) <doi:10.48550/arXiv.2102.08591>.
Generates region-specific Suess and Laws corrections for stable carbon isotope data from marine organisms collected between 1850 and 2023. Version 0.1.6 of SuessR contains four built-in regions: the Bering Sea ('Bering Sea'), the Aleutian archipelago ('Aleutian Islands'), the Gulf of Alaska ('Gulf of Alaska'), and the subpolar North Atlantic ('Subpolar North Atlantic'). Users can supply their own environmental data for regions currently not built into the package to generate corrections for those regions.
This package creates simulated data from structural equation models with standardized loading. Data generation methods are described in Schneider (2013) <doi:10.1177/0734282913478046>.
Use inverse probability weighting methods to estimate treatment effect under marginal structure model (MSM) for the transition hazard of semi competing risk data, i.e. illness death model. We implement two specific such models, the usual Markov illness death structural model and the general Markov illness death structural model. We also provide the predicted three risks functions from the marginal structure models. Zhang, Y. and Xu, R. (2022) <arXiv:2204.10426>.
This package provides a framework for evaluation of clinical trial safety. Users can interactively explore their data using the included Shiny application.