Enter the query into the form above. You can look for specific version of a package by using @ symbol like this: gcc@10.
API method:
GET /api/packages?search=hello&page=1&limit=20
where search is your query, page is a page number and limit is a number of items on a single page. Pagination information (such as a number of pages and etc) is returned
in response headers.
If you'd like to join our channel webring send a patch to ~whereiseveryone/toys@lists.sr.ht adding your channel as an entry in channels.scm.
Feature Ordering by Integrated R square Dependence (FORD) is a variable selection algorithm based on the new measure of dependence: Integrated R2 Dependence Coefficient (IRDC). For more information, see the paper: Azadkia and Roudaki (2025),"A New Measure Of Dependence: Integrated R2" <doi:10.48550/arXiv.2505.18146>.
Fits Zeta distributions (discrete power laws) to data that arises from forensic surveys of clothing on the presence of glass and paint in various populations. The general method is described to some extent in Coulson, S.A., Buckleton, J.S., Gummer, A.B., and Triggs, C.M. (2001) <doi:10.1016/S1355-0306(01)71847-3>, although the implementation differs.
This package provides the Big Merge Tracker and COSCI algorithms for convex clustering and feature screening using L1 fusion penalty. See Radchenko, P. and Mukherjee, G. (2017) <doi:10.1111/rssb.12226> and T.Banerjee et al. (2017) <doi:10.1016/j.jmva.2017.08.001> for more details.
"This package quantifies the provenance of sediments in a catchment or study area. Based on a characterization of the sediment sources and the end sediment mixtures, a mixing model algorithm is applied to the sediment mixtures to estimate the relative contribution of each potential source. The package includes several graphs to help users in their data understanding, such as box plots, correlation, PCA, and LDA graphs. In addition, new developments such as the Consensus Ranking (CR), Consistent Tracer Selection (CTS), and Linear Variability Propagation (LVP) methods are included to correctly apply the fingerprinting technique and increase dataset and model understanding. A new method based on Conservative Balance (CB) method has also been included to enable the use of isotopic tracers.".
Estimates the probability matrix for the RÃ C Ecological Inference problem using the Expectation-Maximization Algorithm with four approximation methods for the E-Step, and an exact method as well. It also provides a bootstrap function to estimate the standard deviation of the estimated probabilities. In addition, it has functions that aggregate rows optimally to have more reliable estimates in cases of having few data points. For comparing the probability estimates of two groups, a Wald test routine is implemented. The library has data from the first round of the Chilean Presidential Election 2021 and can also generate synthetic election data. Methods described in Thraves, Charles; Ubilla, Pablo; Hermosilla, Daniel (2024) A Fast Ecological Inference Algorithm for the RÃ C case <doi:10.2139/ssrn.4832834>.
This package provides color palettes designed to be reminiscent of text on paper. The color schemes were taken from <https://stephango.com/flexoki>. Includes discrete, continuous, and binned scales that are not necessarily color-blind friendly. Simple scale and theme functions are available for use with ggplot2'.
Implementation of two sample comparison procedures based on median-based statistical tests for functional data, introduced in Smida et al (2022) <doi:10.1080/10485252.2022.2064997>. Other competitive state-of-the-art approaches proposed by Chakraborty and Chaudhuri (2015) <doi:10.1093/biomet/asu072>, Horvath et al (2013) <doi:10.1111/j.1467-9868.2012.01032.x> or Cuevas et al (2004) <doi:10.1016/j.csda.2003.10.021> are also included in the package, as well as procedures to run test result comparisons and power analysis using simulations.
This package implements the formulae required to calculate freedom from disease according to Cameron and Baldock (1998) <doi:10.1016/S0167-5877(97)00081-0>. These are the methods used at the Swedish national veterinary institute (SVA) to evaluate the performance of our nation animal disease surveillance programmes.
Finite element modeling of beam structures and 2D geometries using constant strain triangles. Applies material properties and boundary conditions (load and constraint) to generate a finite element model. The model produces stress, strain, and nodal displacements; a heat map is available to demonstrate regions where output variables are high or low. Also provides options for creating a triangular mesh of 2D geometries. Package developed with reference to: Bathe, K. J. (1996). Finite Element Procedures.[ISBN 978-0-9790049-5-7] -- Seshu, P. (2012). Textbook of Finite Element Analysis. [ISBN-978-81-203-2315-5] -- Mustapha, K. B. (2018). Finite Element Computations in Mechanics with R. [ISBN 9781315144474].
An implementation of multiple regression models for count data. These include various forms of the negative binomial (NB-1, NB-2, NB-P, generalized negative binomial, etc.), Poisson-Lognormal, other compound Poisson distributions, the Generalized Waring model, etc. Information on the different forms of the negative binomial are described by Greene (2008) <doi:10.1016/j.econlet.2007.10.015>. For treatises on count models, see Cameron and Trivedi (2013) <doi:10.1017/CBO9781139013567> and Hilbe (2012) <doi:10.1017/CBO9780511973420>. For the implementation of under-reporting in count models, see Wood et al. (2016) <doi:10.1016/j.aap.2016.06.013>. For prediction methods in random parameter models, see Wood and Gayah (2025) <doi:10.1016/j.aap.2025.108147>. For estimating random parameters using maximum simulated likelihood, see Greene and Hill (2010) <doi:10.1108/S0731-9053(2010)26>; Gourieroux and Monfort (1996) <doi:10.1093/0198774753.001.0001>; or Hensher et al. (2015) <doi:10.1017/CBO9781316136232>.
Edit vectors to fill missing values, based on the vector itself.
This package provides a neighborhood-based, greedy search algorithm is performed to estimate a feature allocation by minimizing the expected loss based on posterior samples from the feature allocation distribution. The method is described in Dahl, Johnson, and Andros (2023) "Comparison and Bayesian Estimation of Feature Allocations" <doi:10.1080/10618600.2023.2204136>.
The funFEM algorithm (Bouveyron et al., 2014) allows to cluster functional data by modeling the curves within a common and discriminative functional subspace.
To help you access, transform, analyze, and visualize ForestGEO data, we developed a collection of R packages (<https://forestgeo.github.io/fgeo/>). This package, in particular, helps you to plot ForestGEO data. To learn more about ForestGEO visit <https://forestgeo.si.edu/>.
Estimation, model selection and goodness-of-fit of (1) factor copula models for mixed continuous and discrete data in Kadhem and Nikoloulopoulos (2021) <doi:10.1111/bmsp.12231>; (2) bi-factor and second-order copula models for item response data in Kadhem and Nikoloulopoulos (2023) <doi:10.1007/s11336-022-09894-2>; (3) factor tree copula models for item response data in Kadhem and Nikoloulopoulos (2022) <arXiv:2201.00339>.
This package performs analysis of variance testing procedures for univariate and multivariate functional data (Cuesta-Albertos and Febrero-Bande (2010) <doi:10.1007/s11749-010-0185-3>, Gorecki and Smaga (2015) <doi:10.1007/s00180-015-0555-0>, Gorecki and Smaga (2017) <doi:10.1080/02664763.2016.1247791>, Zhang et al. (2018) <doi:10.1016/j.csda.2018.05.004>).
Functions, S4 classes/methods and a graphical user interface (GUI) to design surveys to substantiate freedom from disease using a modified hypergeometric function (see Cameron and Baldock, 1997, <doi:10.1016/s0167-5877(97)00081-0>). Herd sensitivities are computed according to sampling strategies "individual sampling" or "limited sampling" (see M. Ziller, T. Selhorst, J. Teuffert, M. Kramer and H. Schlueter, 2002, <doi:10.1016/S0167-5877(01)00245-8>). Methods to compute the a-posteriori alpha-error are implemented. Risk-based targeted sampling is supported.
Input has to be in the form of vectors of lower class limits and upper class limits and frequencies; the output will give a cumulative frequency distribution table with cumulative frequency plot.
For functions that take and return vectors (or scalars), this package provides 8 algorithms for finding fixed point vectors (vectors for which the inputs and outputs to the function are the same vector). These algorithms include Anderson (1965) acceleration <doi:10.1145/321296.321305>, epsilon extrapolation methods (Wynn 1962 <doi:10.2307/2004051>) and minimal polynomial methods (Cabay and Jackson 1976 <doi:10.1137/0713060>).
This package provides a high-performance framework for deriving bioclimatic and custom summary variables from large-scale climate raster data. The package features a dual-backend architecture that intelligently switches between fast in-memory processing for smaller datasets (via the terra package) and a memory-safe tiled approach for massive datasets that do not fit in RAM (via exactextractr and Rfast'). The main functions, derive_bioclim() and derive_statistics(), offer a unified interface with advanced options for custom time periods and static indices, making it suitable for a wide range of ecological and environmental modeling applications. A software note is in preparation. In the meantime, you can visit the package website <https://gepinillab.github.io/fastbioclim/> to find tutorials in English and Spanish.
FastGit <https://doc.fastgit.org/> works like a mirror of GitHub to make significant acceleration. fgitR is a package to do git operation with FastGit automatically.
Create descriptive file names with ease. New file names are automatically (but optionally) time stamped and placed in date stamped directories. Streamline your analysis pipeline with input and output file names that have informative tags and proper file extensions.
This package provides a Bayesian Nonparametric model for the study of time-evolving frequencies, which has become renowned in the study of population genetics. The model consists of a Hidden Markov Model (HMM) in which the latent signal is a distribution-valued stochastic process that takes the form of a finite mixture of Dirichlet Processes, indexed by vectors that count how many times each value is observed in the population. The package implements methodologies presented in Ascolani, Lijoi and Ruggiero (2021) <doi:10.1214/20-BA1206> and Ascolani, Lijoi and Ruggiero (2023) <doi:10.3150/22-BEJ1504> that make it possible to study the process at the time of data collection or to predict its evolution in future or in the past.
Creates, manipulates, and evaluates hemodynamic response functions and event-related regressors for functional magnetic resonance imaging data analysis. Supports multiple basis sets including Canonical, Gamma, Gaussian, B-spline, and Fourier bases. Features decorators for time-shifting and blocking, and efficient convolution algorithms for regressor construction. Methods are based on standard fMRI analysis techniques as described in Jezzard et al. (2001, ISBN:9780192630711).